Что такое ультрафиолетовые лучи. Дуга сварки промышленной. Применение в криминалистике

И фиолетовый), ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн λ 400-10 нм. Вся область ультрафиолетового излучения условно делится на ближнюю (400-200 нм) и далёкую, или вакуумную (200-10 нм); последнее название обусловлено тем, что ультрафиолетовое излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

Ближнее ультрафиолетовое излучение открыто в 1801 году немецким учёным Н. Риттером и английским учёным У. Волластоном по фотохимическому действию этого излучения на хлористое серебро. Вакуумное ультрафиолетовое излучение обнаружено немецким учёным В. Шуманом при помощи построенного им вакуумного спектрографа с флюоритовой призмой (1885-1903) и безжелатиновых фотопластинок. Он получил возможность регистрировать коротковолновое излучение до 130 нм. Английский учёный Т. Лайман, впервые построив вакуумный спектрограф с вогнутой дифракционной решёткой, регистрировал ультрафиолетовое излучение с длиной волны до 25 нм (1924). К 1927 году был изучен весь промежуток между вакуумным ультрафиолетовым излучением и рентгеновским излучением.

Спектр ультрафиолетового излучения может быть линейчатым, непрерывным или состоять из полос в зависимости от природы источника ультрафиолетового излучения (см. Спектры оптические). Линейчатым спектром обладает УФ-излучение атомов, ионов или лёгких молекул (например, H 2). Для спектров тяжёлых молекул характерны полосы, обусловленные электронно-колебательно-вращательными переходами молекул (см. Молекулярные спектры). Непрерывный спектр возникает при торможении и рекомбинации электронов (см. Тормозное излучение).

Оптические свойства веществ.

Оптические свойства веществ в ультрафиолетовой области спектра значительно отличаются от их оптических свойств в видимой области. Характерной чертой является уменьшение прозрачности (увеличение коэффициента поглощения) большинства тел, прозрачных в видимой области. Например, обычное стекло непрозрачно при λ < 320 нм; в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий и некоторые другие материалы. Наиболее далёкую границу прозрачности (105 нм) имеет фтористый литий. Для λ < 105 нм прозрачных материалов практически нет. Из газообразных веществ наибольшую прозрачность имеют инертные газы, граница прозрачности которых определяется величиной их ионизационного потенциала. Самую коротковолновую границу прозрачности имеет гелий - 50,4 нм. Воздух непрозрачен практически при λ < 185 нм из-за поглощения кислородом.

Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны излучения. Например, коэффициент отражения свеженапылённого алюминия, одного из лучших материалов для отражающих покрытий в видимой области спектра, резко уменьшается при λ < 90 нм (рис. 1) . Отражение алюминия значительно уменьшается также вследствие окисления поверхности. Для защиты поверхности алюминия от окисления применяются покрытия из фтористого лития или фтористого магния. В области λ < 80 нм некоторые материалы имеют коэффициент отражения 10-30% (золото, платина, радий, вольфрам и др.), однако при λ < 40 нм и их коэффициент отражения снижается до 1% и меньше.

Источники ультрафиолетового излучения.

Излучение накалённых до 3000 К твёрдых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощное ультрафиолетовое излучение испускает плазма газового разряда. При этом в зависимости от разрядных условий и рабочего вещества может испускаться как непрерывный, так и линейчатый спектр. Для различных применений ультрафиолетового излучения промышленность выпускает ртутные, водородные, ксеноновые и другие газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для ультрафиолетового излучения материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и так далее) является мощным источником ультрафиолетового излучения. Интенсивное ультрафиолетовое излучение непрерывного спектра испускают электроны, ускоренные в синхротроне (синхротронное излучение). Для ультрафиолетовой области спектра разработаны также оптические квантовые генераторы (лазеры). Наименьшую длину волны имеет водородный лазер (109,8 нм).

Естественные источники ультрафиолетового излучения - Солнце, звёзды, туманности и другие космические объекты. Однако лишь длинноволновая часть ультрафиолетового излучения (λ > 290 нм) достигает земной поверхности. Более коротковолновое ультрафиолетовое излучение поглощается озоном, кислородом и другими компонентами атмосферы на высоте 30-200 км от поверхности Земли, что играет большую роль в атмосферных процессах. Ультрафиолетовое излучение звёзд и других космических тел, кроме поглощения в земной атмосфере, в интервале 91,2-20 нм практически полностью поглощается межзвёздным водородом.

Приёмники ультрафиолетового излучения.

Для регистрации ультрафиолетового излучения при λ > 230 нм используются обычные фотоматериалы. В более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приёмники, использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды, ионизационные камеры, счётчики фотонов, фотоумножители и др. Разработан также особый вид фотоумножителей - каналовые электронные умножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка является каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрические изображения в ультрафиолетовом излучении и объединяют преимущества фотографических и фотоэлектрических методов регистрации излучения. При исследовании ультрафиолетового излучения также используют различные люминесцирующие вещества, преобразующие ультрафиолетовое излучение в видимое. На этой основе созданы приборы для визуализации изображений в ультрафиолетовом излучении.

Применение ультрафиолетового излучения.

Изучение спектров испускания, поглощения и отражения в УФ-области позволяет определять электронную структуру атомов, ионов, молекул, а также твёрдых тел. УФ-спектры Солнца, звёзд и др. несут информацию о физических процессах, происходящих в горячих областях этих космических объектов (см. Ультрафиолетовая спектроскопия, Вакуумная спектроскопия). На фотоэффекте, вызываемом ультрафиолетовым излучением, основана фотоэлектронная спектроскопия. Ультрафиолетовое излучение может нарушать химические связи в молекулах, в результате чего могут происходить различные химические реакции (окисление, восстановление, разложение, полимеризация и так далее, см. Фотохимия). Люминесценция под действием ультрафиолетового излучения используется при создании люминесцентных ламп, светящихся красок, в люминесцентном анализе и люминесцентной дефектоскопии. Ультрафиолетовое излучение применяется в криминалистике для установления идентичности красителей, подлинности документов и тому подобное. В искусствоведении ультрафиолетовое излучение позволяет обнаружить на картинах не видимые глазом следы реставраций (рис. 2) . Способность многих веществ к избирательному поглощению ультрафиолетового излучения используется для обнаружения в атмосфере вредных примесей, а также в ультрафиолетовой микроскопии.

Мейер А., Зейтц Э., Ультрафиолетовое излучение, пер. с нем., М., 1952; Лазарев Д. Н., Ультрафиолетовая радиация и ее применение, Л. - М., 1950; Samson I. A. R., Techniques of vacuum ultraviolet spectroscopy, N. Y. - L. - Sydney, ; Зайдель А. Н., Шрейдер Е. Я., Спектроскопия вакуумного ультрафиолета, М., 1967; Столяров К. П., Химический анализ в ультрафиолетовых лучах, М. - Л., 1965; Бейкер А., Беттеридж Д., Фотоэлектронная спектроскопия, пер. с англ., М., 1975.

Рис. 1. Зависимости коэффициента отражения r слоя алюминия от длины волны.

Рис. 2. Спектры действия ультр. изл. на биообъекты.

Рис. 3. Выживаемость бактерий в зависимости от дозы ультрафиолетового излучения.

Биологическое действие ультрафиолетового излучения.

При действии на живые организмы ультрафиолетовое излучение поглощается верхними слоями тканей растений или кожи человека и животных. В основе биологического действия ультрафиолетового излучения лежат химические изменения молекул биополимеров. Эти изменения вызываются как непосредственным поглощением ими квантов излучения, так и (в меньшей степени) образующимися при облучении радикалами воды и других низкомолекулярных соединений.

На человека и животных малые дозы ультрафиолетового излучения оказывают благотворное действие - способствуют образованию витаминов группы D (см. Кальциферолы), улучшают иммунобиологические свойства организма. Характерной реакцией кожи на ультрафиолетовое излучение является специфическое покраснение - эритема (максимальным эритемным действием обладает ультрафиолетовое излучение с λ = 296,7 нм и λ = 253,7 нм), которая обычно переходит в защитную пигментацию (загар). Большие дозы ультрафиолетового излучения могут вызывать повреждения глаз (фотоофтальмию) и ожог кожи. Частые и чрезмерные дозы ультрафиолетового излучения в некоторых случаях могут оказывать канцерогенное действие на кожу.

В растениях ультрафиолетовое излучение изменяет активность ферментов и гормонов, влияет на синтез пигментов, интенсивность фотосинтеза и фотопериодической реакции. Не установлено, полезны ли и тем более необходимы ли для прорастания семян, развития проростков и нормальной жизнедеятельности высших растений малые дозы ультрафиолетового излучения. Большие дозы ультрафиолетового излучения, несомненно, неблагоприятны для растений, о чём свидетельствуют и существующие у них защитные приспособления (например, накопление определённых пигментов, клеточные механизмы восстановления от повреждений).

На микроорганизмы и культивируемые клетки высших животных и растений ультрафиолетовое излучение оказывает губительное и мутагенное действие (наиболее эффективно ультрафиолетовое излучения с λ в пределах 280-240 нм). Обычно спектр летального и мутагенного действия ультрафиолетового излучения примерно совпадает со спектром поглощения нуклеиновых кислот - ДНК и РНК (рис. 3, А) , в некоторых случаях спектр биологического действия близок к спектру поглощения белков (рис. 3, Б) . Основная роль в действии ультрафиолетового излучения на клетки принадлежит, по-видимому, химическим изменениям ДНК: входящие в её состав пиримидиновые основания (главным образом тимин) при поглощении квантов ультрафиолетовое излучение образуют димеры, которые препятствуют нормальному удвоению (репликации) ДНК при подготовке клетки к делению. Это может приводить к гибели клеток или изменению их наследственных свойств (мутациям). Определённое значение в летальном действии ультрафиолетового излучения на клетки имеют также повреждение биолеских мембран и нарушение синтеза различных компонентов мембран и клеточной оболочки.

Большинство живых клеток может восстанавливаться от вызываемых ультрафиолетовым излучением повреждений благодаря наличию у них систем репарации. Способность восстанавливаться от повреждений, вызываемых ультрафиолетовым излучением, возникла, вероятно, на ранних этапах эволюции и играла важную роль в выживании первичных организмов, подвергавшихся интенсивному солнечному ультрафиолетовому облучению.

По чувствительности к ультрафиолетовому излучению биологические объекты различаются очень сильно. Например, доза ультрафиолетового излучения, вызывающая гибель 90% клеток, для разных штаммов кишечной палочки равна 10, 100 и 800 эрг/мм 2 , а для бактерий Micrococcus radiodurans - 7000 эрг/мм 2 (рис. 4, А и Б) . Чувствительность клеток к ультрафиолетовому излучению в большой степени зависит также от их физиологического состояния и условий культивирования до и после облучения (температура, состав питательной среды и др.). Сильно влияют на чувствительность клеток к ультрафиолетовому излучению мутации некоторых генов. У бактерий и дрожжей известно около 20 генов, мутации которых повышают чувствительность к ультрафиолетовому излучению. В ряде случаев такие гены ответственны за восстановление клеток от лучевых повреждений. Мутации других генов нарушают синтез белка и строение клеточных мембран, тем самым повышая радиочувствительность негенетических компонентов клетки. Мутации, повышающие чувствительность к ультрафиолетовому излучению, известны и у высших организмов, в том числе у человека. Так, наследственное заболевание - пигментная ксеродерма обусловлено мутациями генов, контролирующих темновую репарацию.

Генетические последствия облучения ультрафиолетовым излучением пыльцы высших растений, клеток растений и животных, а также микроорганизмов выражаются в повышении частот мутирования генов, хромосом и плазмид. Частота мутирования отдельных генов, при действии высоких доз ультрафиолетового излучения, может повышаться в тысячи раз по сравнению с естественным уровнем и достигает нескольких процентов. В отличие от генетического действия ионизирующих излучений, мутации генов под влиянием ультрафиолетового излучения возникают относительно чаще, чем мутации хромосом. Благодаря сильному мутагенному эффекту ультрафиолетовое излучение широко используют как в генетических исследованиях, так и в селекции растений и промышленных микроорганизмов, являющихся продуцентами антибиотиков, аминокислот, витаминов и белковой биомассы. Генетическое действие ультрафиолетового излучения могло играть существенную роль в эволюции живых организмов. О применении ультрафиолетового излучения в медицине см. Светолечение.

Самойлова К. А., Действие ультрафиолетовой радиации на клетку, Л., 1967; Дубров А. П, Генетические и физиологические эффекты действия ультрафиолетовой радиации на высшие растения, М., 1968; Галанин Н. Ф., Лучистая энергия и ее гигиеническое значение, Л., 1969; Смит К., Хэнеуолт Ф., Молекулярная фотобиология, пер. с англ., М., 1972; Шульгин И. А., Растение и солнце, Л., 1973; Мясник М. Н., Генетический контроль радиочувствительности бактерий, М., 1974.

Ультрафиолет был открыт более 200 лет назад, но лишь с изобретением искусственных источников ультрафиолетового излучения человек смог использовать удивительные свойства этого невидимого света. Сегодня ультрафиолетовая лампа помогает бороться со многими заболеваниями и дезинфицирует, позволяет создавать новые материалы и используется криминалистами. Но для того чтобы приборы УФ спектра приносили пользу, а не вред, необходимо четко представлять, какими они бывают и для чего служат.

Что такое ультрафиолетовое излучение и каким оно бывает

Ты наверняка знаешь, что свет – это электромагнитное излучение. В зависимости от частоты цвет такого излучения изменяется. Низкочастотный спектр кажется нам красным, высокочастотный – синим. Если поднять частоту еще выше, то свет станет фиолетовым, а после совсем исчезнет. Точнее, исчезнет для твоего глаза. На самом деле излучение перейдет в область ультрафиолетового спектра, который мы не способны видеть из-за особенностей глаза.

Но если мы не видим ультрафиолетовый свет, то это не значит, что он на нас никак не воздействует. Ты же не будешь отрицать, что радиация безопасна, поскольку мы ее не можем увидеть. А радиация – не что иное, как такое же электромагнитное излучение, как свет и ультрафиолет, только более высокой частоты.

Но вернемся к ультрафиолетовому спектру. Он располагается, как мы выяснили, между видимым светом и радиационным излучением:

Зависимость типа электромагнитного излучения от его частоты

Отбросим свет с радиацией и рассмотрим ультрафиолетовое излучение поближе:


Разделение ультрафиолетового диапазона на поддиапазоны

На рисунке хорошо видно, что весь УФ диапазон условно делится на два поддиапазона: ближний и дальний. Но на этом же рисунке сверху мы видим деление на УФА, УФВ и УФС. В дальнейшем мы будем пользоваться именно таким разделением – ультрафиолет А, В и С, поскольку оно четко разграничивает степень воздействия излучения на биологические объекты.

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

Конечный участок дальнего диапазона никак не обозначен, поскольку не имеет особого практического значения. Воздух для ультрафиолетового излучения с длиной волны короче 100 нм (его еще называют жестким ультрафиолетовым) практически непрозрачен, поэтому его источники можно использовать только в вакууме.

Свойства ультрафиолета и воздействие его на живые организмы

Итак, в нашем распоряжении три ультрафиолетовых диапазона: А, В и С. Рассмотрим свойства каждого из них.

Ультрафиолет А

Излучение лежит в диапазоне 400 – 320 нм и называется мягким или длинноволновым ультрафиолетовым. Проникновение его в глубинные слои живых тканей минимально. При умеренном применении УФА не только не наносит вреда организму, но и полезен. Он укрепляет иммунитет, способствует выработке витамина D, улучшает состояние кожи. Именно под таким ультрафиолетом мы загораем на пляже.

Но при передозировке даже мягкий ультрафиолетовый диапазон может представлять определенную опасность для человека. Наглядный пример: добрался до пляжа, прилег на пару часиков и «сгорел». Знакомо? Безусловно. Но могло быть и еще хуже, если бы ты лежал часиков пять или с открытыми глазами и без качественных солнцезащитных очков. При длительном воздействии на глаза УФА способен вызвать ожог роговицы, а кожу сжечь буквально до волдырей.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Все вышесказанное справедливо и для других биологических объектов: растений, животных, бактерий. Именно умеренный УФА в значительной степени провоцирует «цветение» воды в водоемах и порчу продуктов, подстегивая рост водорослей и бактерий. Передозировка его чрезвычайно вредна.

Ультрафиолет В

Средневолновый ультрафиолет, занимающий диапазон 320 – 280 нм. Ультрафиолетовое излучение с такой длиной волны способно проникать в верхние слои живых тканей и вызывать серьезные изменения их структуры вплоть до частичного разрушения ДНК. Даже минимальная доза УФВ способна вызвать серьезный и довольно глубокий радиационный ожог кожи, роговицы и хрусталика. Серьезную опасность такое излучение также представляет для растений, а для многих видов вирусов и бактерий ввиду их небольших размеров УФВ вообще смертелен.

Ультрафиолет С

Самый коротковолновый и самый опасный для всего живого диапазон, в который входит ультрафиолетовое излучение с длиной волны от 280 до 100 нм. УФС даже в небольших дозах способно разрушать цепи ДНК, вызывая мутации. У человека, как правило, его воздействие вызывает рак кожи и меланому. Из-за способности достаточно глубоко проникать в ткани УФС может вызвать необратимый радиационный ожог сетчатки и глубокие повреждения кожного покрова.

Дополнительную опасность представляет способность ультрафиолетового излучения категории С ионизировать молекулы кислорода, находящиеся в атмосфере. В результате такого воздействия в воздухе образуется озон — трехатомный кислород, который является сильнейшим окислителем, а по степени опасности для биологических объектов относится к первой, самой опасной категории ядов.

Устройство ультрафиолетовой лампы

Человек научился создавать искусственные источники ультрафиолетового излучения, причем излучать они могут в любом заданном диапазоне. Конструктивно ультрафиолетовые лампы выполняются в виде колбы, заполненной инертным газом с примесью металлической ртути. По бокам колбы впаиваются тугоплавкие электроды, на которые подается напряжение питания прибора. Под действием этого напряжения в колбе начинается тлеющий разряд, который заставляет молекулы ртути испускать ультрафиолет во всех спектрах УФ диапазона.


Конструкция ультрафиолетовой лампы

Изготавливая колбу из того или иного материала, конструкторы могут отсекать излучение определенной длины волны. Так, лампа из эритемного стекла пропускает только ультрафиолетовое излучение типа А, увиолевая колба уже прозрачна для УФВ, но не пропускает жесткое излучение УФС. Если же колбу сделать из кварцевого стекла, то прибор будет излучать все три вида ультрафиолетового спектра – А, В, С.

Все лампы ультрафиолетового света являются газоразрядными и должны включаться в сеть через специальное пускорегулирующее устройство (ЭПРА). В противном случае тлеющий разряд в колбе мгновенно перейдет в неуправляемый дуговой.


Электромагнитное (слева) и электронное пускорегулирующие устройства для газоразрядных ламп ультрафиолетового света

Важно! Лампы накаливания с синим баллоном, которые мы часто используем для прогревания при ЛОР заболеваниях, не являются ультрафиолетовыми. Это обычные лампочки накаливания, а синяя колба служит лишь для того, чтобы ты не получил тепловой ожог и не повредил глаза ярким светом, держа довольно мощную лампу у самого лица.


Рефлектор Минина не имеет никакого отношения к ультрафиолетовому излучению и комплектуется обычной лампой накаливания из синего стекла

Применение УФ ламп

Итак, ультрафиолетовые лампы существуют, и мы даже знаем, что у них внутри. Но для чего они нужны? Сегодня приборы ультрафиолетового света широко используются как в быту, так и на производстве. Вот основные области применения УФ ламп:

1. Изменение физических свойств материалов . Под действием ультрафиолетового излучения некоторые синтетические материалы (краски, лаки, пластики и пр.) могут менять свои свойства: твердеть, размягчаться, менять цвет и другие физические характеристики. Живой пример – стоматология. Специальная фотополимерная пломба пластична до тех пор, пока врач после ее установки не осветит полость рта мягким ультрафиолетовым светом. После такой обработки полимер становится прочнее камня. В косметических салонах тоже используют специальный гель, твердеющий под УФ лампой. С его помощью, к примеру, косметологи наращивают ногти.

После обработки ультрафиолетовой лампой мягкая, как пластилин, пломба приобретает исключительную прочность

2. Криминалистика и уголовное право . Полимеры, способные светиться в ультрафиолете, широко используются для защиты от подделки. Для интереса попробуй осветить купюру ультрафиолетовой лампой. Таким же образом можно проверить купюры почти всех стран, подлинность особо важных документов или печатей на них (так называемая защита «Цербер»). Криминалисты пользуются ультрафиолетовыми лампами для обнаружения следов крови. Она, конечно, не светится, зато полностью поглощает ультрафиолетовое излучение и на общем фоне будет казаться абсолютно черной.


Элементы защиты купюр, печатей и паспорта (Беларусь), видимые только в ультрафиолетовом излучении

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Если ты смотрел фильмы про криминалистов, то наверняка заметил, что в них кровь под УФ лампой вопреки вышесказанному мной светится сине-белым. Чтобы достичь такого эффекта, специалисты обрабатывают предполагаемые пятна крови специальным составом, который взаимодействует с гемоглобином, после чего начинает флюоресцировать (светиться в ультрафиолетовом излучении). Такой метод не только более нагляден для зрителя, но и более эффективен.

3. При дефиците естественного ультрафиолета . Польза ультрафиолетовой лампы спектра А для биологических объектов была открыта почти одновременно с ее изобретением. При недостатке естественного ультрафиолетового излучения страдает иммунитет человека, кожа приобретает нездоровый бледный оттенок. Если растения и комнатные цветы выращивать за оконным стеклом или под обычными лампами накаливания, то и они чувствуют себя не лучшим образом – плохо растут и часто болеют. Все дело в отсутствии ультрафиолетового излучения спектра А, недостаток которого особенно вреден для детей. Сегодня УФА лампы используют для укрепления иммунитета и улучшения состояния кожи повсеместно, где не хватает естественного света.


Использование ультрафиолетовых ламп спектра А для восполнения дефицита естественного ультрафиолета

На самом деле приборы, служащие для восполнения дефицита естественного ультрафиолетового света, излучают не только ультрафиолет А, но и В, хотя доля последнего в общем излучении чрезвычайно мала — от 0,1 до 2-3 %.

4. Для дезинфекции . Все вирусы и бактерии – тоже живые организмы, к тому же они настолько малы, что «перегрузить» их ультрафиолетовым светом совсем несложно. Жесткий ультрафиолет (С) в состоянии проходить некоторые микроорганизмы буквально насквозь, разрушая их структуру. Таким образом, лампы спектра В и С, получившие название антибактериальных или бактерицидных, можно использовать для обеззараживания квартиры, общественных заведений, воздуха, воды, предметов и даже для лечения вирусных инфекций. При использовании ламп УФС дополнительным дезинфицирующим фактором выступает озон, о котором я писал выше.


Использование ультрафиолетовых ламп для дезинфекции и антибактериальной обработки

Ты наверняка слышал такой медицинский термин, как кварцевание. Эта процедура – не что иное, как обработка предметов или тела человека строго дозированным жестким ультрафиолетовым излучением.

Основные характеристики источников ультрафиолетового излучения

Какими характеристиками УФ лампы нужно руководствоваться, чтобы при ее использовании получить максимальный эффект и не нанести вреда здоровью своему и окружающих? Вот основные из них:

  1. Диапазон излучения.
  2. Мощность.
  3. Назначение.
  4. Срок службы.

Излучаемый диапазон

Это основной параметр. В зависимости от длины волны ультрафиолет действует по-разному. Если УФА опасен лишь для глаз, и при правильном использовании не представляет серьезной угрозы для организма, то УФВ в состоянии не только испортить глаза, но и спровоцировать глубокие, порой необратимые ожоги на коже. УФС отлично дезинфицирует, но может представлять смертельную опасность для человека, поскольку излучение такой длины волны разрушает ДНК и образует ядовитый газ озон.

С другой стороны, спектр УФА абсолютно бесполезен в качестве антибактериального средства. Пользы от такой лампы, к примеру, при очистке воздуха от микробов, практически не будет. Более того, некоторые виды бактерий и микрофлоры станут еще активнее. Таким образом, выбирая УФ лампу, необходимо четко представлять для чего она будет использоваться и какой спектр излучения она должна иметь.

Мощность

Имеется в виду сила создаваемого лампой УФ потока. Она пропорциональна потребляемой мощности, поэтому при выборе прибора ориентируются обычно на данный показатель. Бытовые ультрафиолетовые лампы обычно не превышают мощности 40-60, профессиональные устройства могут иметь мощность до 200-500 Вт и более. Первые обычно имеют низкое давление в колбе, вторые – высокое. Выбирая излучатель для тех или иных целей, нужно четко представлять, что в плане мощности больше — не всегда значит лучше. Для получения максимального эффекта излучение прибора должно быть строго дозированным. Поэтому при покупке лампы обращайте внимание не только на ее назначение, но и на рекомендуемую площадь помещения или производительность прибора, если он служит для очистки воздуха или воды.

Назначение и конструкция

По своему назначению ультрафиолетовые лампы делятся на бытовые и профессиональные. Вторые обычно имеют большую мощность, более широкий и жесткий спектр излучения и сложны по конструкции. Именно поэтому они требуют для своего обслуживания квалифицированного специалиста и соответствующих знаний. Если ты собираешься покупать ультрафиолетовую лампу для домашнего использования, то от профессиональных устройств лучше отказаться. В таком случае велика вероятность, что лампа, скорее, навредит, чем принесет пользу. Особенно это касается приборов, работающих в диапазоне УФС, излучение которых является ионизирующим.

По типу конструкции ультрафиолетовые лампы делятся на:

1. Открытые . Эти приборы излучают ультрафиолет непосредственно в окружающую среду. При неправильном применении представляют наибольшую опасность для организма человека, но позволяют провести качественное обеззараживание помещения, включая воздух и все находящиеся в нем предметы. Лампы открытой или полуоткрытой (узконаправленного излучения) конструкции используются также для медицинских целей: лечения инфекционных заболеваний и восполнения дефицита ультрафиолета (фитолампы, солярии).


Использование бактерицидных ламп для антибактериальной обработки помещений

2. Рециркуляторы или приборы закрытого типа. Лампа в них находится за полностью непрозрачным кожухом, а УФ изучение воздействует только на рабочую среду – газ или жидкость, прогоняемую специальным насосом сквозь облучаемую камеру. В быту рециркуляторы обычно используются для бактерицидной обработки воды или воздуха. Поскольку устройства не излучают ультрафиолет, при правильном использовании они полностью безопасны для человека и могут использоваться в его присутствии. Рециркуляторы могут быть как бытового, так и промышленного назначения.


Рециркулятор – стерилизатор для воды (слева) и для воздуха

3. Универсальные. Приборы этого типа могут работать как в режиме рециркуляции воздуха, так и прямого излучения. Конструктивно выполнены как рециркулятор с раскладным кожухом. В собранном виде это обычный рециркулятор, с открытыми шторками – бактерицидная лампа открытого типа.


Универсальная бактерицидная лампа в режиме рециркулятора (слева)

Срок службы

Поскольку принцип работы и конструкция ультрафиолетовой лампы сходны с принципом и устройством люминесцентного осветительного прибора, логично предположить, что сроки службы у них одинаковы и могут достигать 8 000–10 000 ч. На практике это не совсем так. В процессе работы лампа «стареет»: ее световой поток уменьшается. Но если в обычной осветительной лампе этот эффект заметен визуально, то УФ лампу «на глаз» проверить невозможно. Поэтому производитель ограничивается гораздо меньшим сроком работы: от 1 000 до 9 000 часов в зависимости от мощности лампы, ее назначения и, конечно, качества материалов, комплектующих и бренда.

Если в паспорте на устройство не указана периодичность замены ламп или заявлен максимальный срок 20 тысяч часов и более, то от покупки такого устройства стоит отказаться. Также должна насторожить и слишком низкая стоимость прибора. Скорее всего, это низкокачественный товар либо вовсе подделка.

Энергия Солнца представляет собой электромагнитные волны, которые подразделяются на несколько частей спектра:

  • рентгеновские лучи - с самой короткой длиной волны (ниже 2 нм);
  • длина волны ультрафиолетового излучения составляет от 2 до 400 нм;
  • видимая часть света, которая улавливается глазом человека и животных (400-750 нм);
  • теплое окислительное (свыше 750 нм).

Каждая часть находит свое применение и имеет большое значение в жизни планеты и всей ее биомассы. Мы же рассмотрим, что представляют собой лучи в диапазоне от 2 до 400 нм, где они используются и какую роль играют в жизни людей.

История открытия УФ-излучения

Первые упоминания относятся еще к XIII веку в описаниях философа из Индии. Он писал о невидимом глазу фиолетовом свете, который был им обнаружен. Однако технических возможностей того времени явно недоставало, чтобы подтвердить это экспериментально и изучить подробно.

Удалось же это пять веков спустя физику из Германии Риттеру. Именно он проводил опыты над хлоридом серебра по распаду его под воздействием электромагнитного излучения. Ученый увидел, что быстрее данный процесс идет не в той области света, которая была к тому времени уже открыта и называлась инфракрасной, а в противоположной. Выяснилось, что это новая область, до сих пор не исследованная.

Таким образом, в 1842 году было открыто ультрафиолетовое излучение, свойства и применение которого в последствии подверглись тщательному разбору и изучению со стороны разных ученых. Большой вклад в это внесли такие люди, как: Александр Беккерель, Варшавер, Данциг, Македонио Меллони, Франк, Парфенов, Галанин и другие.

Общая характеристика

Что же представляет собой применение которого на сегодняшний день столь широко в различных отраслях деятельности человека? Во-первых, следует обозначить, что появляется данный света только при очень высоких температурах от 1500 до 2000 0 С. Именно в таком интервале УФ достигает пика активности по воздействию.

По физической природе это электромагнитная волна, длина которой колеблется в довольно широких пределах - от 10 (иногда от 2) до 400 нм. Весь диапазон данного излучения условно делится на две области:

  1. Ближний спектр. Доходит до Земли через атмосферу и озоновый слой от Солнца. Длина волны - 380-200 нм.
  2. Далекий (вакуумный). Активно поглощается озоном, кислородом воздуха, компонентами атмосферы. Исследовать удается только специальными вакуумными устройствами, за что и получил свое название. Длина волны - 200-2 нм.

Существует своя классификация видов, которые имеет ультрафиолетовое излучение. Свойства и применение находит каждый из них.

  1. Ближний.
  2. Дальний.
  3. Экстремальный.
  4. Средний.
  5. Вакуумный.
  6. Длинноволновой черный свет (УФ-А).
  7. Коротковолновой гермицидный (УФ-С).
  8. Средневолновой УФ-В.

Длина волны ультрафиолетового излучения у каждого вида своя, но все они находятся в общих уже обозначенных ранее пределах.

Интересным является УФ-А, или, так называемый, черный свет. Дело в том, что данный спектр имеет длину волны от 400-315 нм. Это находится на границе с видимым светом, который человеческий глаз способен улавливать. Поэтому такое излучение, проходя через определенные предметы или ткани, способно переходить в область видимого фиолетового света, и люди различают его как черный, темно-синий или темно-фиолетовый оттенок.

Спектры, которые дают источники ультрафиолетового излучения, могут быть трех типов:

  • линейчатые;
  • непрерывные;
  • молекулярные (полосные).

Первые характерны для атомов, ионов, газов. Вторая группа - для рекомбинационного, тормозного излучения. Источники третьего типа чаще всего встречаются при изучении разреженных молекулярных газов.

Источники ультрафиолетового излучения

Основные источники УФ-лучей делятся на три большие категории:

  • естественные или природные;
  • искусственные, созданные человеком;
  • лазерные.

Первая группа включает в себя единственный вид концентратора и излучателя - Солнце. Именно небесное светило дает мощнейший заряд данного типа волн, которые способны проходить через и достигать поверхности Земли. Однако не всей своей массой. Учеными выдвигается теория о том, что жизнь на Земле зародилась только тогда, когда озоновый экран стал защищать ее от избыточного проникновения вредного в больших концентрациях УФ-излучения.

Именно в этот период стали способны существовать белковые молекулы, нуклеиновые кислоты и АТФ. До сегодняшнего дня слой озона вступает в тесное взаимодействие с основной массой УФ-А, УФ-В и УФ-С, обезвреживая их, и не давая пройти через себя. Поэтому защита от ультрафиолетового излучения всей планеты - исключительно его заслуга.

От чего зависит концентрация проникающего на Землю ультрафиолета? Есть несколько основных факторов:

  • озоновые дыры;
  • высота над уровнем моря;
  • высота солнцестояния;
  • атмосферное рассеивание;
  • степень отражения лучей от земных природных поверхностей;
  • состояние облачных паров.

Диапазон ультрафиолетового излучения, проникающего на Землю от Солнца, колеблется в пределах от 200 до 400 нм.

Следующие источники - это искусственные. К ним можно отнести все те приборы, устройства, технические средства, которые были сконструированы человеком для получения нужного спектра света с заданными параметрами длины волны. Это было сделано с целью получать ультрафиолетовое излучение, применение которого может быть крайне полезным в разных областях деятельности. К искусственным источникам относятся:

  1. Эритемные лампы, обладающие способностью активизировать синтез витамина D в коже. Это предохраняет от заболеваний рахитом и лечит его.
  2. Аппараты для соляриев, в которых люди получают не только красивый естественный загар, но и лечатся от заболеваний, возникающих при недостатке открытого солнечного света (так называемая, зимняя депрессия).
  3. Лампы-аттрактанты, позволяющие бороться с насекомыми в условиях помещений безопасно для человека.
  4. Ртутно-кварцевые устройства.
  5. Эксилампа.
  6. Люминесцентные устройства.
  7. Ксеноновые лампы.
  8. Газоразрядные устройства.
  9. Высокотемпературная плазма.
  10. Синхротронное излучение в ускорителях.

Еще один тип источников - лазеры. Их работа основана на генерации различных газов - как инертных, так и нет. Источниками могут быть:

  • азот;
  • аргон;
  • неон;
  • ксенон;
  • органические сцинтилляторы;
  • кристаллы.

Совсем недавно, около 4 лет назад, был изобретен лазер, работающий на свободных электронах. Длина ультрафиолетового излучения в нем равна той, которая наблюдается в условиях вакуума. Лазерные поставщики УФ используются в биотехнологических, микробиологических исследованиях, масс-спектрометрии и так далее.

Биологическое воздействие на организмы

Действие ультрафиолетового излучения на живых существ двояко. С одной стороны, при его недостатке могут возникать заболевания. Это выяснилось только в начале прошлого столетия. Искусственное облучение специальным УФ-А в необходимых нормах способно:

  • активизировать работу иммунитета;
  • вызвать образование важных сосудорасширяющих соединений (гистамин, например);
  • укрепить кожно-мышечную систему;
  • улучшить работу легких, повысить интенсивность газообмена;
  • повлиять на скорость и качество метаболизма;
  • повысить тонус организма, активизировав выработку гормонов;
  • увеличить проницаемость стенок сосудов на коже.

Если УФ-А в достаточном количестве попадает в организм человека, то у него не возникает таких заболеваний, как зимняя депрессия или световое голодание, а также значительно снижается риск развития рахита.

Влияние ультрафиолетового излучения на организм бывает следующих типов:

  • бактерицидное;
  • противовоспалительное;
  • регенерирующее;
  • болеутоляющее.

Эти свойства во многом объясняют широкое применение УФ в медицинских учреждениях любого типа.

Однако, помимо перечисленных плюсов, есть и отрицательные стороны. Существует ряд заболеваний и недугов, которые можно приобрести, если не дополучать или, напротив, принимать в избыточном количестве рассматриваемые волны.

  1. Рак кожи. Это самое опасное воздействие ультрафиолетового излучения. Меланома способна образоваться при избыточном влиянии волн от любого источника - как природного, так и созданного людьми. Это особенно касается любителей загара в солярии. Во всем необходима мера и осторожность.
  2. Разрушительное действие на сетчатку глазных яблок. Другими словами, может развиться катаракта, птеригиум или ожег оболочки. Вредное избыточное воздействие УФ на глаза было доказано учеными уже давно и подтверждено экспериментальными данными. Поэтому при работе с такими источниками следует соблюдать На улице оградить себя можно при помощи темных очков. Однако в этом случае следует опасаться подделок, ведь если стекла не снабжены УФ-отталкивающими фильтрами, то разрушающее действие будет еще сильнее.
  3. Ожоги на коже. В летнее время их можно заработать, если долгое время неконтролируемо подвергать себя воздействию УФ. Зимой же можно получить их из-за особенности снега отражать практически полностью данные волны. Поэтому облучение происходит и со стороны Солнца, и со стороны снега.
  4. Старение. Если люди долгое время находятся под воздействием УФ, то у них начинают очень рано проявляться признаки старения кожи: вялость, морщины, дряблость. Это происходит от того, что защитные барьерные функции покровов ослабевают и нарушаются.
  5. Воздействие с последствиями во времени. Заключаются в проявлениях негативных воздействий не в молодом возрасте, а ближе к старости.

Все эти результаты являются последствиями нарушения дозировок УФ, т.е. они возникают, когда использование ультрафиолетового излучения проводится нерационально, неправильно, и без соблюдения мер безопасности.

Ультрафиолетовое излучение: применение

Основные области использования отталкиваются от свойств вещества. Это справедливо и для спектральных волновых излучений. Так, главными характеристиками УФ, на которых базируется его применение, являются:

  • химическая активность высокого уровня;
  • бактерицидное воздействие на организмы;
  • способность вызывать свечение различных веществ разными оттенками, видимыми глазом человека (люминесценция).

Это позволяет широко использовать ультрафиолетовое излучение. Применение возможно в:

  • спектрометрических анализах;
  • астрономических исследованиях;
  • медицине;
  • стерилизации;
  • обеззараживании питьевой воды;
  • фотолитографии;
  • аналитическом исследовании минералов;
  • УФ-фильтрах;
  • для ловли насекомых;
  • для избавления от бактерий и вирусов.

Каждая из перечисленных областей использует определенный тип УФ со своим спектром и длиной волны. В последнее время данный тип излучения активно используется в физических и химических исследованиях (установление электронной конфигурации атомов, кристаллической структуры молекул и различных соединений, работа с ионами, анализ физических превращений на различных космических объектах).

Есть еще одна особенность воздействия УФ на вещества. Некоторые полимерные материалы способны разлагаться под воздействием интенсивного постоянного источника данных волн. Например, такие, как:

  • полиэтилен любого давления;
  • полипропилен;
  • полиметилметакрилат или органическое стекло.

В чем выражается воздействие? Изделия из перечисленных материалов теряют окраску, трескаются, тускнеют и, в конечном итоге, разрушаются. Поэтому их принято называть чувствительными полимерами. Эту особенность деградации углеродной цепи при условиях солнечной освещенности активно используют в нанотехнологиях, рентгенолитографии, трансплантологии и прочих областях. Делается это в основном для сглаживания шероховатостей поверхности изделий.

Спектрометрия - основная область аналитической химии, которая специализируется на идентификации соединений и их состава по способности поглощать УФ-свет определенной длины волны. Получается, что спектры уникальны для каждого вещества, поэтому можно их классифицировать по результатам спектрометрии.

Также применение ультрафиолетового бактерицидного излучения осуществляется для привлечения и уничтожения насекомых. Действие основано на способности глаза насекомого улавливать невидимые человеку коротковолновые спектры. Поэтому животные летят на источник, где и подвергаются уничтожению.

Использование в соляриях - специальных установках вертикального и горизонтального типа, в которых человеческое тело подвергается воздействию УФ-А. Делается это для активизации выработки в коже меланина, придающего ей более темный цвет, гладкость. Кроме того, при этом подсушиваются воспаления и уничтожаются вредные бактерии на поверхности покровов. Особое внимание следует уделять защите глаз, чувствительных зон.

Медицинская область

Применение ультрафиолетового излучения в медицине основано также на его способностях уничтожать невидимые глазу живые организмы - бактерии и вирусы, и на особенностях, происходящих в организме во время грамотного освещения искусственным или естественным облучением.

Основные показания к лечению УФ можно обозначить в нескольких пунктах:

  1. Все виды воспалительных процессов, ран открытого типа, нагноений и открытых швов.
  2. При травмах тканей, костей.
  3. При ожогах, обморожениях и кожных заболеваниях.
  4. При респираторных недугах, туберкулезе, бронхиальной астме.
  5. При возникновении и развитии различных видов инфекционных заболеваний.
  6. При недугах, сопровождающихся сильными болевыми ощущениями, невралгии.
  7. Заболевания горла и носовой полости.
  8. Рахиты и трофическая
  9. Стоматологические заболевания.
  10. Регуляция давления кровяного русла, нормализация работы сердца.
  11. Развитие раковых опухолей.
  12. Атеросклероз, почечная недостаточность и некоторые другие состояния.

Все эти заболевания могут иметь весьма серьезные последствия для организма. Поэтому лечение и профилактика использованием УФ - это настоящее медицинское открытие, спасающее тысячи и миллионы людских жизней, сохраняющее и возвращающее им здоровье.

Еще один вариант использования УФ с медицинской и биологической точки зрения - это обеззараживание помещений, стерилизация рабочих поверхностей и инструментов. Действие основано на способности УФ угнетать развитие и репликацию молекул ДНК, что приводит к их вымиранию. Бактерии, грибки, простейшие и вирусы гибнут.

Основной проблемой при использовании такого излучения для стерилизации и обеззараживания помещения является область освещения. Ведь организмы уничтожаются только при непосредственном воздействии прямых волн. Все, что остается за пределами, продолжает свое существование.

Аналитическая работа с минералами

Способность вызывать у веществ люминесценцию позволяет применять УФ для анализа качественного состава минералов и ценных горных пород. В этом плане очень интересными бывают драгоценные, полудрагоценные и поделочные камни. Каких только оттенков они не дают при облучении их катодными волнами! Очень интересно об этом писал Малахов, знаменитый геолог. В его труде рассказывается о наблюдениях за свечением цветовой палитры, которое способны давать минералы в разных источниках облучения.

Так, например, топаз, который в видимом спектре имеет красивый насыщенный голубой цвет, при облучении высвечивается ярко-зеленым, а изумруд - красным. Жемчуг вообще не может дать какой-то определенный цвет и переливается многоцветьем. Зрелище в результате получается просто фантастическое.

Если в состав исследуемой породы входят примеси урана, то высвечивание покажет зеленый цвет. Примеси мелита дают синий, а морганита - сиреневый или бледно-фиолетовый оттенок.

Использование в фильтрах

Для использования в фильтрах также применяется ультрафиолетовое бактерицидное излучение. Типы таких структур могут быть разные:

  • твердые;
  • газообразные;
  • жидкие.

Основное применение такие устройства находят в химической отрасли, в частности, в хроматографии. С их помощью можно провести качественный анализ состава вещества и идентифицировать его по принадлежности к тому или иному классу органических соединений.

Обработка питьевой воды

Обеззараживание ультрафиолетовым излучением питьевой воды является одним из самых современных и качественных методов ее очистки от биологических примесей. Преимущества этого метода следующие:

  • надежность;
  • эффективность;
  • отсутствие посторонних продуктов в воде;
  • безопасность;
  • экономичность;
  • сохранение органолептических свойств воды.

Именно поэтому на сегодняшний день такая методика обеззараживания идет в ногу с традиционным хлорированием. Действие основано на тех же особенностях - разрушение ДНК вредоносных живых организмов в составе воды. Используют УФ с длиной волны около 260 нм.

Помимо прямого воздействия на вредителей, ультрафиолет используется также для разрушения остатков химических соединений, которые применяются для смягчения, очищения воды: таких, как, например, хлор или хлорамин.

Лампа черного света

Такие устройства снабжены специальными излучателями, способными давать волны большой длинны, близкой к видимому. Однако они все равно остаются неразличимы для человеческого глаза. Используются такие лампы в качестве устройств, читающих тайные знаки из УФ: например, в паспортах, документах, денежных купюрах и так далее. То есть, такие метки могут быть различимы только под действием определенного спектра. Таким образом построен принцип работы детекторов валюты, устройств для проверки натуральности денежных купюр.

Реставрация и определение подлинности картины

И в этой области находит применение УФ. Каждый художник использовал белила, содержащие в каждый эпохальный промежуток времени разные тяжелые металлы. Благодаря облучению возможно получение так называемых подмалевков, которые дают информацию о подлинности картины, а также о специфической технике, манере письма каждого художника.

Кроме того, лаковая пленка на поверхности изделий относится к чувствительным полимерам. Поэтому она способна стареть под воздействием света. Это позволяет определять возраст композиций и шедевров художественного мира.

Применение ультрафиолетового излучения мы чаще всего наблюдаем в косметических и медицинских целях. Также ультрафиолетовое излучение используется при печати, при обеззараживании и дезинфекции воды и воздуха, при необходимости полимеризации и изменения физического состояния материалов.

Ультрафиолетовое излечение – это вид излучения, который имеет определенную длину волны и занимает промежуточное положение между рентгеновским и фиолетовой зоной видимого излучения. Такое излучение является невидимым для человеческого глаза. Однако благодаря своим свойствам, такое излучение получило очень широкое распространение и применяется во многих областях.

В настоящее время многие ученые целенаправленно изучают действие ультрафиолетового излучения на многие процессы жизнедеятельности, в том числе обменные, регуляторные, трофические. Известно, что ультрафиолетовое излучение благотворно воздействует на организм при некоторых заболеваниях и нарушениях, способствуя лечению . Именно поэтому оно получило широкое применение в области медицины.

Благодаря трудам многих ученых было изучено воздействие ультрафиолетового излучения на биологические процессы в организме человека, чтобы можно было этими процессами управлять.

Защита от ультрафиолетового излучения является необходимой в тех случаях, когда кожа подвергается длительному воздействию солнечных лучей.

Считается, что именно ультрафиолетовые лучи ответственны за фотостарение кожи, а также за развитие канцерогенеза, поскольку при их воздействии образуется много свободных радикалов , пагубно влияющих на все процессы в организме.
К тому же, при применении ультрафиолетового излучения весьма велик риск повреждения цепей ДНК, а это уже может привести к очень трагическим последствиям и возникновению таких страшных заболеваний, как рак и другие.

А вы знаете, какие могут быть полезны для человека? О таких свойствах, а также о свойствах, ультрафиолетового излучения, позволяющих использовать его в различных производственных процессах вы сможете узнать все из нашей статьи.

У нас также доступен обзор . Прочитайте наш материал и вы поймете все основные различия между естественными и искусственными источниками света.

Основным естественным источником такого вида излучения является Солнце . А среди искусственных различают несколько видов:

  • Эритемные лампы (придуманы еще 60-х годах, используются, в основном, для компенсации недостаточности естественного ультрафиолетового излучения. Например, для предотвращения рахита у детей, для облучения молодого поколения сельскохозяйственных животных, в фотариях)
  • Ртутно-кварцевые лампы
  • Эксилампы
  • Бактерицидные лампы
  • Люминесцентные лампы
  • Светодиоды

Множество ламп, излучающих в ультрафиолетовом диапазоне предназначены для освещения помещений и других объектов, а принцип их действия связан с ультрафиолетовым излучением, которое разными способами преобразуется в видимый свет .

Способы генерирования ультрафиолетового излучения:

  • Температурное излучение (применяется в лампах накаливания)
  • Излучение, создающееся благодаря движущимся в электрическом поле газам и парам металлов (применяется в ртутных и газоразрядных лампах)
  • Люминесценция (применяется в эритемных, бактерицидных лампах)

Применение ультрафиолетового излучения в силу его свойств

Промышленность выпускает множество видов ламп для различных способов применения ультрафиолетового излучения:

  • Ртутные
  • Водородные
  • Ксеноновые

Основные свойства УФ — излучения, которые обуславливают его применение:

  • Высокая химическая активность (способствует ускорению многих химических реакций, а также ускорению биологических процессов в организме):
    Под воздействие ультрафиолетового излучения в коже образуется витамин D, серотонин, улучшается тонус и жизнедеятельность организма.
  • Способность убивать различные микроорганизмы (бактерицидное свойство):
    Использование ультрафиолетового бактерицидного излучения способствует дезинфекции воздуха, особенно в таких местах, где собирается много людей (больницы, школы, высшие учебные заведения, вокзалы, метро, большие магазины).
    Обеззараживание воды ультрафиолетовым излучением также пользуется большим спросом, поскольку дает неплохие результаты. При таком способе очистки вода не приобретает неприятный запах и вкус. Это великолепно подходит для очистки воды в рыбных хозяйствах, бассейнах.
    Часто используют метод ультрафиолетового обеззараживания при обработке хирургических инструментов .
  • Способность вызывать люминесценцию некоторых веществ:
    Благодаря такому свойству эксперты-криминалисты обнаруживают следы крови на различных предметах. А также благодаря специальной краске можно обнаруживать меченые купюры, которые применяют в операциях по борьбе с коррупцией.

Применение ультрафиолетового излучения фото

Ниже приводим фотографии по теме статьи «Применение ультрафиолетового излучения». Для открытия галереи фотографий достаточно нажать на миниатюру изображения.

Светолечение активно применяется в медицинской практике для лечения различных заболеваний. Оно включает использование видимого света, лазера, инфракрасного спектра, а также ультрафиолетовых лучей (УФО). Наиболее часто назначается УФО-физиотерапия.

Она применяется для терапии ЛОР-патологий, заболеваний опорно-двигательной системы, при иммунодефицитах, бронхиальной астме и других болезнях. Ультрафиолетовое облучение используют также для бактериостатического эффекта при инфекционных заболеваниях, для обработки воздуха в помещениях.

Общее понятие ультрафиолетового облучения, разновидности приборов, механизм воздействия, показания

Ультрафиолетовое облучение (УФО) – это физиотерапевтическая процедура, которая основана на воздействии лучей ультрафиолетового спектра на ткани и органы. Действие на организм может отличаться при использовании разных длин волн.

УФО-лучи имеют разную длину волны:

  • Длинноволновые (ДУФ) (400–320 нм).
  • Средневолновое (СУФ) (320–280 нм).
  • Коротковолновые (КУФ) (280–180 нм).

Для физиотерапии используют специальные аппараты. Они генерируют ультрафиолетовые лучи разной длинны.

УФО-аппараты для физиотерапии:

  • Интегральные. Генерируют весь спектр УФО.
  • Селективные. Вырабатывают один вид ультрафиолетового излучения: коротковолновые, комбинация коротковолновых и средневолновых спектров.
Интегральные Селективные

ОУШ-1 (для индивидуального применения, местного облучения, общего воздействия на организм);

ОН-7 (подходят для носоглотки)

ОУН 250, ОУН 500 - настольного типа для местного применения).

Источником облучения является ртутно-кварцевая трубчатая лампа. Мощность может быть различной: от 100 до 1000 Вт.

Коротковолновый спектр (КУФ). Источники бактерицидного действия: ОБН-1 (настенный), ОБП-300 (потолочный). Используются для обеззараживания помещений.

Короткие лучи для местного воздействия (облучение кожи, слизистых): БОП-4.

Средневолновый спектр генерируется люминесцентными эритемными источниками с пропускающим ультрафиолет стеклом: ЛЭ-15, ЛЭ-30.

Источники длинных волн (ДУФ) применяют для общего воздействия на организм.

В физиотерапии ультрафиолетовое облучение назначается для профилактики и лечения различных болезней. Механизм воздействия ультрафиолета следующий: активируются обменные процессы, улучшается передача импульсов по нервным волокнам. При попадании УФО-лучей на кожу у пациента развивается эритема. Она выглядит как покраснение кожного покрова. Невидимый период формирования эритемы составляет 3-12 часов. Появившееся эритематозное образование остается на коже еще несколько суток, оно имеет четкие границы.

Длинноволновый спектр не вызывает очень выраженной эритемы. Средневолновые лучи способны уменьшать количество свободных радикалов, стимулируют синтез молекул АТФ. Короткие лучи УФО очень быстро провоцируют эритематозное высыпание.

Небольшие дозировки средних и длинных УФ-волн не способны вызывать эритему. Они нужны для общего действия на организм.

Польза небольших дозировок УФО:

  • Усиливает образование эритроцитов и других клеток крови.
  • Повышает функцию надпочечников, симпатической системы.
  • Снижает образование жировых клеток.
  • Повышает работу именной системы.
  • Стимулирует иммунные реакции.
  • Нормализует уровень глюкозы в крови.
  • Уменьшает количество холестерина крови.
  • Регулирует выведение и всасывание фосфора и кальция.
  • Улучшает функцию сердца и легких.

Местное излучение помогает стимулировать иммунные реакции в области попадания лучей, увеличивает приток крови и отток лимфы.

Дозировки облучения, не провоцирующие появления покраснения, обладают следующими свойствами: повышают регенераторную функцию, усиливают питание тканей, стимулируют появление в коже меланина, повышают иммунитет, стимулируют образование витамина Д. Более высокие дозы, вызывающие эритему (чаще КУФ), способны убивать бактериальных агентов, снижают интенсивность болевого синдрома, уменьшают воспаление на слизистых и коже.

Показания к физиолечению

Общее воздействие Местное воздействие
Стимуляция иммунитета при иммунодефицитах.

Профилактика и терапия рахита (дефицита витамина Д) у детей, при беременности, кормлении грудью.

Гнойные поражения кожного покрова, мягких тканей.

Повышение иммунитета при хронических процессах.

Увеличение образования клеток крови.

Заместительная терапия при дефиците УФО.

Болезни суставов.

Патологии дыхательной системы.

Бронхиальная астма.

Хирургические гнойные раны, пролежни, ожоги, обморожения, абсцессы, рожа, переломы.

Экстрапирамидный синдром, демиелинизирующие патологии, травмы головы, радикулопатии, различные виды болей.

Стоматиты, гингивиты, пародонтоз, инфильтративное образование после удаления зуба.

Риниты, тонзиллиты, гаймориты.

Трещины на сосках у женщин, острые гинекологические воспалительные заболевания.

Мокнущая пупочная ранка у новорожденных, диатез с проявлением экссудации, ревматоидные болезни, пневмонии, поражение кожи стафилококком.

Псориаз, экзематозные высыпания, гнойные поражения кожи у дерматологических больных.

Противопоказаниями к облучению являются:

  • Опухолевый процесс.
  • Гипертермия.
  • Инфекционные заболевания.
  • Гиперпродукция гормонов щитовидной железы.
  • Красная волчанка.
  • Печеночная и почечная дисфункция.

Методика проведения ультрафиолетового облучения

Перед лечением физиотерапевт должен определиться с видом лучей. Обязательным условием является расчет лучевой нагрузки на больного. Нагрузка измеряется в биодозах. Расчет количества биодоз производится по методике Горбачева-Дальфельда. Она основывается на быстроте формирования покраснения кожного покрова. Одна биодоза способна вызывать минимальное покраснение с расстояния 50 см. Такая дозировка является эритемной.

Эритемные дозы подразделяются на:

  • малые (одна-две биодозы);
  • средние (три-четыре биодозы);
  • высокие (пять-восемь биодоз).

Если доза облучения больше восьми биодоз, то ее называют гиперэритемной. Подразделяют облучение на общее и местное. Общее может быть предназначено для одного человека или группы пациентов. Такое излучение продуцируют интегральные аппараты или источники длинных волн.

Детей необходимо облучать при помощи общего УФО очень аккуратно. Для ребенка и школьника применяется неполная биодоза. Начинают с самой маленькой дозировки.

При общем воздействии УФО-лучами новорожденных и очень слабых малышей на начальном этапе воздействуют 1/10–1/8 биодозы. У школьников и дошкольников используют 1/4 биодозы. Нагрузку со временем усиливают до 1 1/2- 1 3/4 биодозы. Эта дозировка остается на весь этап терапии. Сеансы проводят через сутки. Для лечения достаточно 10 сеансов.

Во время процедуры больного нужно раздеть, уложить на кушетку. Прибор ставят на расстоянии 50 см от поверхности тела пациента. Лампу следует накрыть тканью или одеялом вместе с пациентом. Это обеспечивает получение максимальной дозировки облучения. Если не закрывать одеялом, то часть лучей, исходящих от источника, рассеивается. Эффективность терапии при этом будет низкая.

Местное воздействие УФО осуществляют приборами смешанного типа, а также излучающими короткие волны УФ-спектра. Во время местной физиотерапии можно воздействовать на рефлексогенные зоны, облучать фракциями, полями, рядом с местом повреждения.

Местное облучение часто вызывает покраснение кожи, которое оказывает лечебный эффект. Чтобы правильно стимулировать образование эритемы, после ее появления следующие сеансы начинают после ее побледнения. Промежутки между физиопроцедурами составляют 1-3 суток. Дозировку при последующих сеансах увеличивают на треть и более.

Для неповрежденной кожи достаточно 5-6 физиопроцедур. Если на кожном покрове имеются гнойные поражения, пролежни, то облучать нужно до 12 сеансов. Для слизистых оболочек курсовая терапия составляет 10-12 сеансов.

Для детей местное использование УФО разрешается с рождения. Оно ограничивается по площади. У новорожденного ребенка площадь воздействия составляет 50 см2 и больше, для школьников не более 300 см2. Дозировка для эритемотерапии составляет 0,5-1 биодозы.

При острых респираторных заболеваниях производят обработку УФ слизистой носоглотки. Для этого используют специальные тубусы. Сеанс длится 1 минуту (взрослые), полминуты (дети). Курсовая терапия составляет 7 суток.

Грудную клетку облучают по полям. Продолжительность процедуры составляет 3-5 минут. Поля обрабатывают отдельно в разные дни. Сеансы осуществляют каждый день. Кратность облучения поля за курс 2-3 раза, для его выделения применяют клеенку или перфорированную ткань.

При насморке в острый период ультрафиолетовое воздействие осуществляют на ноги со стороны подошвы. Источник устанавливают на расстоянии 10 см. Курсовое лечение до 4 суток. Также делают облучение при помощи тубуса в нос и глотку. Первый сеанс длится 30 секунд. В дальнейшем терапию продлевают до 3 минут. Курсовая терапия составляет 6 сеансов.

При отите ультрафиолетовое воздействие осуществляют на место слухового прохода. Сеанс длится 3 минуты. Терапия включает 6 физиопроцедур. У пациентов с фарингитами, ларингитами, трахеитами облучение производят по передней верхней части грудной клетки. Количество процедур на курс составляет до 6.

При трахеите, фарингите, ангине можно делать облучение задней стенки глотки (горла) при помощи тубусов. Во время сеанса пациент должен говорить звук «а». Длительность физиопроцедуры 1-5 минут. Лечение проводят каждые 2 суток. Курсовая терапия составляет 6 сеансов.

Гнойничковые поражения кожи лечат путем УФО после обработки раневой поверхности. Источник ультрафиолета устанавливают на расстоянии 10 см. Длительность сеанса составляет 2-3 минуты. Лечение продолжается 3 суток.

Фурункулы и абсцессы облучают после вскрытия образования. Обработку осуществляют на расстоянии 10 см до поверхности тела. Продолжительность одной физиопроцедуры равна 3 минутам. Курсовая терапия 10 сеансов.

УФ-лечение в домашних условиях

Ультрафиолетовое облучение допустимо проводить дома. Для этого можно приобрести аппарат УФО в любом магазине медтехники. Для осуществления УФО-физиотерапии в домашних условиях разработан аппарат «Солнышко» (ОУФб-04). Он предназначен для местного воздействия на слизистые и кожу.

Для общего облучения можно приобрести ртутно-кварцевую лампу «Солнышко». Она заменит часть недостающего ультрафиолетового света зимой, обеззаразит воздух. Существуют также домашние облучатели для обуви, воды.

Прибор «Солнышко» для местного использования оснащен тубусом для носа, горла, обработки других частей тела. Аппарат имеет небольшие размеры. Перед приобретением следует убедиться в исправности прибора, наличия сертификатов и гарантий качества. Для уточнения правил применения аппарата необходимо прочитать инструкцию, или обратиться к лечащему доктору.

Заключение

Ультрафиолетовое излучение часто используют в медицине для терапии разных заболеваний. Помимо лечения, аппараты УФО можно применять для обеззараживания помещений. Их используют в больницах и дома. При правильном применении ламп облучение не наносит вреда, а эффективность лечения достаточно высокая.