Какой металл участвует в свертывании крови. С чего начинается процесс свертывания крови? Возможные осложнения, последствия

Скорость свёртываемости крови имеет огромное значение для остановки кровотечений, которые возникают после нарушения целостности сосудов и тканей организма: кровь течет до того момента, пока не образуется пробка из кровяного сгустка. Такой механизм свертывания крови объясняется её способностью сгущаться, то есть образовывать плотную структуру при появлении ран. После того, как процесс заживления раны заканчивается, кровяной сгусток естественным образом рассасывается.

Таким образом, если кровяной сгусток будет образовываться слишком медленно, это станет причиной того, что человек будет терять большое количество крови при наименьшей царапине. Но и повышенная свертываемость крови опасна, поскольку приводит к образованию тромбов в кровеносных сосудах.

Свертывание крови – это очень сложный процесс, при котором, чтобы остановить кровопотерю, одновременно запускается огромное количество элементов, циркулирующих в крови. Вот почему на скорость образования сгустка оказывает непосредственное влияние качество работы свертывающей системы. Причины, негативно влияющие на свёртываемость крови, условно можно разделить на три группы:

  • Наследственные мутации, которые происходят в генах. Изменения в генах могут привести к возникновению заболеваний крови, таких, как гемофилия. Болезнь эта крайне опасна: еще в 60-х годах прошлого века средняя продолжительность жизни человека, с мутацией генов, из-за которых проявилась гемофилия, редко когда превышала одиннадцать лет. Но уже в 80-х гг. люди с мутацией в генах доживали уже до шестидесяти. В наши дни это заболевание успешно лечится с помощью медикаментозной терапии.
  • Физиологические причины – являют собой процессы, сущность которых заключается в том, что на образование сгустка оказывают влияние болезни печени, кровотечения, дефицит витамина К и другие.
  • Употребление некоторых лекарственных препаратов, к которым относятся противоспалительные лекарства, средств, разжижающих кровь, аспирина, антикоагулянтов.

Повышенная свертываемость крови часто происходит из-за сгущения жидкой ткани. Это приводит к замедлению кровотока и повышенному образованию тромбов. Эта ситуация опасна тем, что тромб может закупорить сосуд. Если это окажется центральная артерия или вена, возможен летальный исход.

Причиной сгущения может быть обезвоживание организма из-за поноса, рвоты. Синдром диссеминированного внутрисосудистого свёртывания крови (ДВС) также является причиной того, что жидкая ткань начинает сгущаться в кровеносных сосудах, образуя микротромбы.

Помимо того, что нарушенный кровоток приводит к тромбообразованию, в организме наблюдаются дистрофические изменения. Этот синдром может возникать при различных заболеваниях, от которых зависит скорость и сила его распространения: от вялотекущих хронических состояний до острых поражений с летальным исходом.

Низкая свертываемость крови также опасна, поскольку раны и травмы заживают очень медленно. Об этом очень важно знать врачу перед операцией. Это поможет не допустить кровотечения и спасет жизнь пациента. Также пониженная свёртываемость может стать причиной образования кровотечения в желудочно-кишечном тракте, если у больного есть язва. Это ещё одна причина, от которой зависит необходимость обследования больных перед назначением правильных доз антикоагулянтов.

Важность равновесия

Процесс свёртывания крови является предметом интенсивного изучения на протяжении последних десятилетий. Сама сущность понятия «свёртывающая система крови» подвергалась неоднократному пересмотру.

Многие исследователи придерживаются традиционного мнения о том, что свёртывающая система подразделяется на внутренний и внешний путь. Поэтому существует такое понятие, как нормальный или обычный путь свёртывающей системы крови.

Объясняется это так: свёртывающая система поддерживает своё функционирование с помощью саморегуляции, которая принимает активное участие в поддержании структуры жидкой ткани. Понятие «нормальный путь коагуляции» – это равновесие между механизмами коагуляции и аннтикоагуляции, что является частью противосвёртывающей системы крови. При нарушении баланса между свёртывающей и противосвёртывающей системами наблюдается повышенное образование тромбов или кровотечения.

Взаимодействие компонентов крови

Биохимическая теория свёртывания крови связана с понятием каскада. Каскадом коагуляции называется схема свёртывания крови, которая отображает взаимодействие разных компонентов жидкой ткани (их еще называют факторы крови), что циркулируют в плазме в неактивизированном состоянии до тех пор, пока не случится прорыв сосуда. Когда это случается, в организме один за другим начинаются процессы, направленные на ликвидацию прорыва.

В начале каскада происходит образование тромбопластина, которому предшествуют две фазы свёртывания крови. Они также известны как два пути коагуляции – внутренний и внешний.

Раньше обоим путям каскада, внутреннему и внешнему, придавалось одинаковое значение. Теперь известно, что первичным является внешний (тканевой) путь каскада. В конце каскада, когда заканчивается цепочка ферментных изменений реакций коагуляции, появляется фибрин. Каждая реакция, которая происходит в каскаде, трансформирует профермент в фермент.

Каскад коагуляции регулируется следующими сдерживающими механизмами:

  • Белок С – один из самых сильных факторов противосвёртывающей системы. Это энзим, который активизирует тромбин. Активированная форма белка С вместе с белком S и фосфолипидами в качестве кофакторов (так называют небелковые соединения, что соединяются с белками) ингибирует факторы коагуляции Va и VIIa. Недостаток белков С и S может привести к тромбофилии.
  • Антитромбин – белок, ингибирующий белки сериновой протеазы: тромбин, факторы IXа, Xа, XIа, XIIа.
  • Ингибитор тканевого фактора (TFPI) сдерживает факторы VII и X.
  • Плазмин – белок, который вырабатывается в печени, разрушает фибрин.
  • Простациклин – ингибирует активность тромбоцитов, уменьшая уровень ионов кальция.

Согласно статистике, фактор свертывания VII повышает вероятность смерти от инфаркта. Но с другой стороны, у некоторых людей фактор VII снижает риск тромбоэмболии и инфаркта миокарда. Полиморфизмы вызваны мутациями гена, когда гуанин заменяется на аденин, из-за чего аргинин сменяет глутамин в структуре фактора VII. По статистическим данным, полиморфизмы фактора VII содержится у 10-20% населения.

Что такое фактор крови?

Огромное значение в процессе образования кровяного сгустка имеют факторы свертывания крови. Обычно это ферменты, которые вырабатываются в печени, селезенке и некоторых других органах. Когда происходит повреждение сосудов, факторы крови запускают процессы, необходимые для блокирования прорыва.

Теория, объясняющая свёртываемость крови как цепочку ферментативных реакций, была сформулирована в 18 веке Х.Й. Шмидтом. В качестве основных стадий процесса свёртывания были названы:

  • Превращение протромбина в тромбин.
  • Активизация тромбином превращения фибриногена в фибрин.

Для прохождения этих стадий необходимо присутствие ионов кальция. В настоящее время эта теория развита и дополнена открытием многих дополнительных факторов.

Фактор VII и АДФ

Всего существует тринадцать факторов, которые обозначают римскими цифрами. Фактор свёртывания крови VIII является одним из важнейших, поэтому его количество в жидкой ткани помогает диагностировать склонность к гемофилии. В каскаде свёртывания фактор VII вступает в реакцию с фактором III, переводя в активное состояние факторы IX и X. Иными словами, он принимает активное участие в образовании кровяного сгустка.

Наследственные мутации генетического материала могут привести к тому, что фактор свёртывания крови VIII будет иметь дефективную структуру. Это увеличивает риск заболевания гемофилией.

Ещё одним фактором, что влияет на активизацию тромбоцитов и усиление их тромбообразующей активности, является АДФ. Этот фермент выделяется при разрушении эритроцитов.

Усиленный распад эритроцитов или гемолиз происходит при многих воспалительных заболеваниях, инфекционных заражениях, переливании резус-несовместимой крови, несовпадение групп крови матери и плода. Продукты распада эритроцитов усиливают агрегацию и адгезию тромбоцитов, которые могут послужить причинами внутрисосудистого свёртывания крови.

Непосредственным результатом разрушения эритроцитов является анемия. При патологическом гемолизе, когда происходит разрушение значительного количества эритроцитов, вырабатывается значительное количество билирубина. В результате повышенное количество этого пигмента наблюдается в моче и мало – в кале (обычно наоборот).

Важность анализа

Свёртываемость состоит из множества фаз, поэтому анализ крови должен учитывать все известные факторы, принимающие участие в этой цепочке. Диагностика, направленная определить, в каком звене функционирование какого фактора нарушено, повышает точность диагноза и способствует назначению соответствующего лечения.

Такой анализ, как активированное частичное тромбопластиновое время, позволяет оценить склонность пациента к внутренним кровотечениям. Он позволяет понять роль тканевого фактора в процессе коагуляции, протестировать функционирование печени, выявить дефицит витамина К.

Анализ крови на Д-димер (продукт распада фибрина, который образуется после разрушения тромба) важен при проведении хирургических операций и в период беременности, поскольку позволяет оценить состояние сердечно-сосудистой системы. Таким образом, правильная диагностика свёртываемости крови помогает снизить риска осложнений и летального исхода при тяжёлых заболеваниях, во время операций и родов. Анализ на свертываемость крови дает возможность получить надёжную гарантию безопасности от негативных последствий, что может спровоцировать нарушение свёртываемости.

Свертывание крови - крайне сложный и во многом еще загадочный биохимический процесс, который запускается при повреждении кровеносной системы и ведет к превращению плазмы крови в студенистый сгусток, затыкающий рану и останавливающий кровотечение. Нарушения этой системы крайне опасны и могут привести к кровотечению, тромбозу или другим патологиям, которые совместно отвечают за львиную долю смертности и инвалидности в современном мире. Здесь мы рассмотрим устройство этой системы и расскажем о самых современных достижениях в ее изучении.

Каждый, кто хоть раз в жизни получал царапину или рану, приобретал тем самым замечательную возможность наблюдать превращение крови из жидкости в вязкую нетекучую массу, приводящее к остановке кровотечения. Этот процесс называется свертыванием крови и управляется сложной системой биохимических реакций.

Иметь какую-нибудь систему остановки кровотечения - абсолютно необходимо для любого многоклеточного организма, имеющего жидкую внутреннюю среду. Свертывание крови является жизненно необходимым и для нас: мутации в генах основных белков свертывания, как правило, летальны. Увы, среди множества систем нашего организма, нарушения в работе которых представляют опасность для здоровья, свертывание крови также занимает абсолютное первое место как главная непосредственная причина смерти: люди болеют разными болезнями, но умирают почти всегда от нарушений свертывания крови . Рак, сепсис, травма, атеросклероз, инфаркт, инсульт - для широчайшего круга заболеваний непосредственной причиной смерти является неспособность системы свертывания поддерживать баланс между жидким и твердым состояниями крови в организме.

Если причина известна, почему же с ней нельзя бороться? Разумеется, бороться можно и нужно: ученые постоянно создают новые методы диагностики и терапии нарушений свертывания. Но проблема в том, что система свертывания очень сложна. А наука о регуляции сложных систем учит, что управлять такими системами нужно особым образом. Их реакция на внешнее воздействие нелинейна и непредсказуема, и для того, чтобы добиться нужного результата, нужно знать, куда приложить усилие. Простейшая аналогия: чтобы запустить в воздух бумажный самолетик, его достаточно бросить в нужную сторону; в то же время для взлета авиалайнера потребуется нажать в кабине пилота на правильные кнопки в нужное время и в нужной последовательности. А если попытаться авиалайнер запустить броском, как бумажный самолетик, то это закончится плохо. Так и с системой свертывания: чтобы успешно лечить, нужно знать «управляющие точки».

Вплоть до самого последнего времени свертывание крови успешно сопротивлялось попыткам исследователей понять его работу, и лишь в последние годы тут произошел качественный скачок. В данной статье мы расскажем об этой замечательной системе: как она устроена, почему ее так сложно изучать, и - самое главное - поведаем о последних открытиях в понимании того, как она работает.

Как устроено свертывание крови

Остановка кровотечения основана на той же идее, что используют домохозяйки для приготовления холодца - превращении жидкости в гель (коллоидную систему, где формируется сеть молекул, способная удержать в своих ячейках тысячекратно превосходящую ее по весу жидкость за счет водородных связей с молекулами воды). Кстати, та же идея используется в одноразовых детских подгузниках, в которые помещается разбухающий при смачивании материал. С физической точки зрения, там нужно решать ту же самую задачу, что и в свертывании - борьбу с протечками при минимальном приложении усилий.

Свертывание крови является центральным звеном гемостаза (остановки кровотечения). Вторым звеном гемостаза являются особые клетки - тромбоциты , - способные прикрепляться друг к другу и к месту повреждения, чтобы создать останавливающую кровь пробку.

Общее представление о биохимии свертывания можно получить из рисунка 1, внизу которого показана реакция превращения растворимого белка фибриногена в фибрин , который затем полимеризуется в сетку. Эта реакция представляет собой единственную часть каскада, имеющую непосредственный физический смысл и решающую четкую физическую задачу. Роль остальных реакций - исключительно регуляторная: обеспечить превращение фибриногена в фибрин только в нужном месте и в нужное время.

Рисунок 1. Основные реакции свертывания крови. Система свертывания представляет собой каскад - последовательность реакций, где продукт каждой реакции выступает катализатором следующей. Главный «вход» в этот каскад находится в его средней части, на уровне факторов IX и X: белок тканевый фактор (обозначен на схеме как TF) связывает фактор VIIa, и получившийся ферментативный комплекс активирует факторы IX и X. Результатом работы каскада является белок фибрин, способный полимеризоваться и образовывать сгусток (гель). Подавляющее большинство реакций активации - это реакции протеолиза, т.е. частичного расщепления белка, увеличивающего его активность. Почти каждый фактор свертывания обязательно тем или иным образом ингибируется: обратная связь необходима для стабильной работы системы.

Обозначения: Реакции превращения факторов свертывания в активные формы показаны односторонними тонкими черными стрелками . При этом фигурные красные стрелки показывают, под действием каких именно ферментов происходит активация. Реакции потери активности в результате ингибирования показаны тонкими зелеными стрелками (для простоты стрелки изображены как просто «уход», т.е. не показано, с какими именно ингибиторами происходит связывание). Обратимые реакции формирования комплексов показаны двусторонними тонкими черными стрелками . Белки свертывания обозначены либо названиями, либо римскими цифрами, либо аббревиатурами (TF - тканевый фактор, PC - протеин С, APC - активированный протеин С). Чтобы избежать перегруженности, на схеме не показаны: связывание тромбина с тромбомодулином, активация и секреция тромбоцитов, контактная активация свертывания.

Фибриноген напоминает стержень длиной 50 нм и толщиной 5 нм (рис. 2а ). Активация позволяет его молекулам склеиваться в фибриновую нить (рис 2б ), а затем в волокно, способное ветвиться и образовывать трехмерную сеть (рис. 2в ).

Рисунок 2. Фибриновый гель. а - Схематическое устройство молекулы фибриногена. Основа ее составлена из трех пар зеркально расположенных полипептидных цепей α, β, γ. В центре молекулы можно видеть области связывания, которые становятся доступными при отрезании тромбином фибринопептидов А и Б (FPA и FPB на рисунке). б - Механизм сборки фибринового волокна: молекулы крепятся друг к другу «внахлест» по принципу головка-к-серединке, образуя двухцепочечное волокно. в - Электронная микрофотография геля: фибриновые волокна могут склеиваться и расщепляться, образуя сложную трехмерную структуру.

Рисунок 3. Трехмерная структура молекулы тромбина. На схеме показаны активный сайт и части молекулы, ответственные за связывание тромбина с субстратами и кофакторами. (Активный сайт - часть молекулы, непосредственно распознающее место расщепления и осуществляющее ферментативный катализ.) Выступающие части молекулы (экзосайты) позволяют осуществлять «переключение» молекулы тромбина, делая его мультифункциональным белком, способным работать в разных режимах. Например, связывание тромбомодулина с экзосайтом I физически перекрывает доступ к тромбину прокоагулянтным субстратам (фибриноген, фактор V) и аллостерически стимулирует активность по отношению к протеину C.

Активатор фибриногена тромбин (рис. 3) принадлежит к семейству сериновых протеиназ - ферментов, способных осуществлять расщепление пептидных связей в белках. Он является родственником пищеварительных ферментов трипсина и химотрипсина. Протеиназы синтезируются в неактивной форме, называемой зимогеном . Чтобы их активировать, необходимо расщепить пептидную связь, удерживающую часть белка, которая закрывает активный сайт. Так, тромбин синтезируется в виде протромбина, который может быть активирован. Как видно из рис. 1 (где протромбин обозначен как фактор II), это катализируется фактором Xa.

Вообще, белки свертывания называют факторами и нумеруют римскими цифрами в порядке официального открытия. Индекс «а» означает активную форму, а его отсутствие - неактивный предшественник. Для давно открытых белков, таких как фибрин и тромбин, используют и собственные имена. Некоторые номера (III, IV, VI) по историческим причинам не используются.

Активатором свертывания служит белок, называемый тканевым фактором , присутствующий в мембранах клеток всех тканей, за исключением эндотелия и крови. Таким образом, кровь остается жидкой только благодаря тому, что в норме она защищена тонкой защитной оболочкой эндотелия. При любом нарушении целостности сосуда тканевой фактор связывает из плазмы фактор VIIa, а их комплекс - называемый внешней теназой (tenase, или Xase, от слова ten - десять, т.е. номер активируемого фактора) - активирует фактор X.

Тромбин также активирует факторы V, VIII, XI, что ведет к ускорению его собственного производства: фактор XIa активирует фактор IX, а факторы VIIIa и Va связывают факторы IXa и Xa, соответственно, увеличивая их активность на порядки (комплекс факторов IXa и VIIIa называется внутренней теназой ). Дефицит этих белков ведет к тяжелым нарушениям: так, отсутствие факторов VIII, IX или XI вызывает тяжелейшую болезнь гемофилию (знаменитую «царскую болезнь», которой болел царевич Алексей Романов); а дефицит факторов X, VII, V или протромбина несовместим с жизнью.

Такое устройство системы называется положительной обратной связью : тромбин активирует белки, которые ускоряют его собственное производство. И здесь возникает интересный вопрос, а зачем они нужны? Почему нельзя сразу сделать реакцию быстрой, почему природа делает ее исходно медленной, а потом придумывает способ ее дополнительного ускорения? Зачем в системе свертывания дублирование? Например, фактор X может активироваться как комплексом VIIa-TF (внешняя теназа), так и комплексом IXa-VIIIa (внутренняя теназа); это выглядит совершенно бессмысленным.

В крови также присутствуют ингибиторы протеиназ свертывания. Основными являются антитромбин III и ингибитор пути тканевого фактора. Кроме этого, тромбин способен активировать сериновую протеиназу протеин С , которая расщепляет факторы свертывания Va и VIIIa, заставляя их полностью терять свою активность.

Протеин С - предшественник сериновой протеиназы, очень похожей на факторы IX, X, VII и протромбин. Он активируется тромбином, как и фактор XI. Однако при активации получившаяся сериновая протеиназа использует свою ферментативную активность не для того, чтобы активировать другие белки, а для того, чтобы их инактивировать. Активированный протеин С производит несколько протеолитических расщеплений в факторах свертывания Va и VIIIa, заставляя их полностью терять свою кофакторную активность. Таким образом, тромбин - продукт каскада свертывания - ингибирует свое собственное производство: это называется отрицательной обратной связью. И опять у нас регуляторный вопрос: зачем тромбин одновременно ускоряет и замедляет собственную активацию?

Эволюционные истоки свертывания

Формирование защитных систем крови началось у многоклеточных свыше миллиарда лет назад - собственно, как раз в связи с появлением крови. Сама система свертывания является результатом преодоления другой исторической вехи - возникновения позвоночных около пятисот миллионов лет назад. Скорее всего, эта система возникла из иммунитета. Появление очередной системы иммунных реакций, которая боролась с бактериями путем обволакивания их фибриновым гелем, привело к случайному побочному результату: кровотечение стало прекращаться быстрее. Это позволило увеличивать давление и силу потоков в кровеносной системе, а улучшение сосудистой системы, то есть улучшение транспорта всех веществ, открыло новые горизонты развития. Кто знает, не было ли появление свертывания тем преимуществом, которое позволило позвоночным занять свое нынешнее место в биосфере Земли?

У ряда членистогих (таких, как рак-мечехвост) свертывание также существует, но оно возникло независимо и осталось на иммунологических ролях. Насекомые, как и прочие беспозвоночные, обычно обходятся более слабой разновидностью системы остановки кровотечения, основанной на агрегации тромбоцитов (точнее, амебоцитов - дальних родственников тромбоцитов). Этот механизм вполне функционален, но накладывает принципиальные ограничения на эффективность сосудистой системы, - так же, как трахейная форма дыхания ограничивает максимально возможный размер насекомого.

К сожалению, существа с промежуточными формами системы свертывания почти все вымерли. Единственным исключением являются бесчелюстные рыбы: геномный анализ системы свертывания у миноги показал, что она содержит гораздо меньше компонентов (то есть, устроена заметно проще) . Начиная же с челюстных рыб и до млекопитающих системы свертывания очень похожи. Системы клеточного гемостаза также работают по схожим принципам, несмотря на то, что мелкие, безъядерные тромбоциты характерны только для млекопитающих. У остальных позвоночных тромбоциты - крупные клетки, имеющие ядро.

Подводя итог, система свертывания изучена очень хорошо. В ней уже пятнадцать лет не открывали новых белков или реакций, что для современной биохимии составляет вечность. Конечно, нельзя совсем исключить вероятность такого открытия, но пока что не существует ни одного явления, которое мы не могли бы объяснить при помощи имеющихся сведений. Скорее наоборот, система выглядит гораздо сложнее, чем нужно: мы напомним, что из всего этого (довольно громоздкого!) каскада собственно желированием занимается только одна реакция, а все остальные нужны для какой-то непонятной регуляции.

Именно поэтому сейчас исследователи-коагулологи, работающие в самых разных областях - от клинической гемостазиологии до математической биофизики, - активно переходят от вопроса «Как устроено свертывание?» к вопросам «Почему свертывание устроено именно так?» , «Как оно работает?» и, наконец, «Как нам нужно воздействовать на свертывание, чтобы добиться желаемого эффекта?» . Первое, что необходимо сделать для ответа - научиться исследовать свертывание целиком, а не только отдельные реакции.

Как исследовать свертывание?

Для изучения свертывания создаются различные модели - экспериментальные и математические. Что именно они позволяют получить?

С одной стороны, кажется, что самым лучшим приближением для изучения объекта является сам объект. В данном случае - человек или животное. Это позволяет учитывать все факторы, включая ток крови по сосудам, взаимодействия со стенками сосудов и многое другое. Однако в этом случае сложность задачи превосходит разумные границы. Модели свертывания позволяют упростить объект исследования, не упуская его существенных особенностей.

Попытаемся составить представление о том, каким требованиям должны отвечать эти модели, чтобы корректно отражать процесс свертывания in vivo .

В экспериментальной модели должны присутствовать те же биохимические реакции, что и в организме. Должны присутствовать не только белки системы свертывания, но и прочие участники процесса свертывания - клетки крови, эндотелия и субэндотелия. Система должна учитывать пространственную неоднородность свертывания in vivo : активацию от поврежденного участка эндотелия, распространение активных факторов, присутствие тока крови.

Рассмотрение моделей свертывания естественно начать с методов исследования свертывания in vivo . Основа практически всех используемых подходов такого рода заключается в нанесении подопытному животному контролируемого повреждения с тем, чтобы вызвать гемостатическую или тромботическую реакцию. Данная реакция исследуется различными методами:

  • наблюдение за временем кровотечения;
  • анализ плазмы, взятой у животного;
  • вскрытие умерщвленного животного и гистологическое исследование;
  • наблюдение за тромбом в реальном времени с использованием микроскопии или ядерного магнитного резонанса (рис. 4).

Рисунок 4. Формирование тромба in vivo в модели тромбоза, индуцированного лазером. Эта картинка воспроизведена из исторической работы, где ученые впервые смогли пронаблюдать развитие тромба «вживую». Для этого в кровь мыши впрыснули концентрат флуоресцентно меченных антител к белкам свертывания и тромбоцитам, и, поместив животное под объектив конфокального микроскопа (позволяющего осуществлять трехмерное сканирование), выбрали доступную для оптического наблюдения артериолу под кожей и повредили эндотелий лазером. Антитела начали присоединяться к растущему тромбу, сделав возможным его наблюдение.

Классическая постановка эксперимента по свертыванию in vitro заключается в том, что плазма крови (или цельная кровь) смешивается в некоторой емкости с активатором, после чего производится наблюдение за процессом свертывания. По методу наблюдения экспериментальные методики можно разделить на следующие типы:

  • наблюдение за самим процессом свертывания;
  • наблюдение за изменением концентраций факторов свертывания от времени.

Второй подход дает несравненно больше информации. Теоретически, зная концентрации всех факторов в произвольный момент времени, можно получить полную информацию о системе. На практике исследование даже двух белков одновременно дорого и связано с большими техническими трудностями.

Наконец, свертывание в организме протекает неоднородно. Формирование сгустка запускается на поврежденной стенке, распространяется с участием активированных тромбоцитов в объеме плазмы, останавливается с помощью эндотелия сосудов. Адекватно изучить эти процессы с помощью классических методов невозможно. Вторым важным фактором является наличие потока крови в сосудах.

Осознание этих проблем привело к появлению, начиная с 1970-х годов, разнообразных проточных экспериментальных систем in vitro . Несколько больше времени потребовалось на осознание пространственных аспектов проблемы. Только в 1990-е годы стали появляться методы, учитывающие пространственную неоднородность и диффузию факторов свертывания, и только в последнее десятилетие они стали активно использоваться в научных лабораториях (рис. 5).

Рисунок 5. Пространственный рост фибринового сгустка в норме и патологии. Свертывание в тонком слое плазмы крови активировалось иммобилизованным на стенке тканевым фактором. На фотографиях активатор расположен слева . Серая расширяющаяся полоса - растущий фибриновый сгусток.

Наряду с экспериментальными подходами для исследований гемостаза и тромбоза также используются математические модели (этот метод исследований часто называется in silico ). Математическое моделирование в биологии позволяет устанавливать глубокие и сложные взаимосвязи между биологической теорией и опытом. Проведение эксперимента имеет определенные границы и сопряжено с рядом трудностей. Кроме того, некоторые теоретически возможные эксперименты неосуществимы или запредельно дороги вследствие ограничений экспериментальной техники. Моделирование упрощает проведение экспериментов, так как можно заранее подобрать необходимые условия для экспериментов in vitro и in vivo , при которых интересующий эффект будет наблюдаем.

Регуляция системы свертывания

Рисунок 6. Вклад внешней и внутренней теназы в формирование фибринового сгустка в пространстве. Мы использовали математическую модель, чтобы исследовать, как далеко может простираться влияние активатора свертывания (тканевого фактора) в пространстве. Для этого мы посчитали распределение фактора Xa (который определяет распределение тромбина, который определяет распределение фибрина). На анимации показаны распределения фактора Xa, произведенного внешней теназой (комплексом VIIa–TF) или внутренней теназой (комплексом IXa–VIIIa), а также общее количество фактора Xa (заштрихованная область). (Вставка показывает то же самое на более крупной шкале концентраций.) Можно видеть, что произведенный на активаторе фактор Xa не может проникнуть далеко от активатора из-за высокой скорости ингибирования в плазме. Напротив, комплекс IXa–VIIIa работает вдали от активатора (т.к. фактор IXa медленнее ингибируется и потому имеет большее расстояние эффективной диффузии от активатора), и обеспечивает распространение фактора Xa в пространстве.

Сделаем следующий логический шаг и попробуем ответить на вопрос - а как описанная выше система работает?

Каскадное устройство системы свертывания

Начнем с каскада - цепочки активирующих друг друга ферментов. Один фермент, работающий с постоянной скоростью, дает линейную зависимость концентрации продукта от времени. У каскада из N ферментов эта зависимость будет иметь вид t N , где t - время. Для эффективной работы системы важно, чтобы ответ носил именно такой, «взрывной» характер, поскольку это сводит к минимуму тот период, когда сгусток фибрина еще непрочен.

Запуск свертывания и роль положительных обратных связей

Как упоминалось в первой части статьи, многие реакции свертывания медленны. Так, факторы IXa и Xa сами по себе являются очень плохими ферментами и для эффективного функционирования нуждаются в кофакторах (факторах VIIIa и Va, соответственно). Эти кофакторы активируются тромбином: такое устройство, когда фермент активирует собственное производство, называется петлей положительной обратной связи.

Как было показано нами экспериментально и теоретически, положительная обратная связь активации фактора V тромбином формирует порог по активации - свойство системы не реагировать на малую активацию, но быстро срабатывать при появлении большой. Подобное умение переключаться представляется весьма ценным для свертывания: это позволяет предотвратить «ложное срабатывание» системы.

Роль внутреннего пути в пространственной динамике свертывания

Одной из интригующих загадок, преследовавших биохимиков на протяжении многих лет после открытия основных белков свертывания, была роль фактора XII в гемостазе. Его дефицит обнаруживался в простейших тестах свертывания, увеличивая время, необходимое для образования сгустка, однако, в отличие от дефицита фактора XI, не сопровождался нарушениями свертывания.

Один из наиболее правдоподобных вариантов разгадки роли внутреннего пути был предложен нами с помощью пространственно неоднородных экспериментальных систем. Было обнаружено, что положительные обратные связи имеют большое значение именно для распространения свертывания. Эффективная активация фактора X внешней теназой на активаторе не поможет сформировать сгусток вдали от активатора, так как фактор Xa быстро ингибируется в плазме и не может далеко отойти от активатора. Зато фактор IXa, который ингибируется на порядок медленнее, вполне на это способен (и ему помогает фактор VIIIa, который активируется тромбином). А там, куда сложно дойти и ему, начинает работать фактор XI, также активируемый тромбином. Таким образом, наличие петель положительных обратных связей помогает создать трехмерную структуру сгустка.

Путь протеина С как возможный механизм локализации тромбообразования

Активация протеина С тромбином сама по себе медленна, но резко ускоряется при связывании тромбина с трансмембранным белком тромбомодулином, синтезируемым клетками эндотелия. Активированный протеин С способен разрушать факторы Va и VIIIa, на порядки замедляя работу системы свертывания. Ключом к пониманию роли данной реакции стали пространственно-неоднородные экспериментальные подходы. Наши эксперименты позволили предположить, что она останавливает пространственный рост тромба, ограничивая его размер.

Подведение итогов

В последние годы сложность системы свертывания постепенно становится менее загадочной. Открытие всех существенных компонентов системы, разработка математических моделей и использование новых экспериментальных подходов позволили приоткрыть завесу тайны. Структура каскада свертывания расшифровывается, и сейчас, как мы видели выше, практически для каждой существенной части системы выявлена или предложена роль, которую она играет в регуляции всего процесса.

На рисунке 7 представлена наиболее современная попытка пересмотреть структуру системы свертывания. Это та же схема, что и на рис. 1, где разноцветным затенением выделены части системы, отвечающие за разные задачи, как обсуждалось выше. Не все в этой схеме является надежно установленным. Например, наше теоретическое предсказание, что активация фактора VII фактором Xa позволяет свертыванию пороговым образом отвечать на скорость потока, остается пока еще непроверенным в эксперименте.

Кровь – это соединительная ткань, которая находится в жидком состоянии. Циркулирует она по замкнутому кругу в системе кровеносных сосудов. Включает форменные клетки (лейкоциты, эритроциты, тромбоциты) и жидкое вещество – плазму.

Что такое гемокоагуляция и ее функции

Свертывание крови – процесс сложный, протекающий поэтапно. Относится гемокоагуляция к числу важных реакций, защищающих организм от кровопотерь в случае повреждения стенки сосуда, а значит, и от гибели. Свертывание – это переход крови из жидкого состояния в желеобразное. В результате происходит образование тромба. При плохой свертываемости есть опасность погибнуть от кровотечения даже при не слишком тяжелых ранениях.

В этом процессе участвуют кровеносные сосуды, ткани, которыми они окружены, активные вещества плазмы, а также форменные клетки крови, при этом безъядерным пластинкам (тромбоцитам) отводится в свертывании крови главная роль.

Как быстро происходит гемокоагуляция?

При нормальной свертываемости процесс начинается практически сразу после повреждения сосуда. Приблизительное время свертывания крови – 5-7 минут. За это время в норме тромб должен полностью сформироваться. Есть заболевание, а именно гемофилия, при которой гемокоагуляции не происходит. Кроме этого, ухудшается она на холоде, а также от воздействия гирудина, гепарина, фибринолизина, лимоннокислого натрия и калия.

Процесс гемостаза защищает организм от кровопотерь при повреждении тканей и сосудов

Система свертывания крови

Система включает активные элементы, или факторы свертывания крови. Вещества, находящиеся в плазме, относятся к группе белков и непосредственно участвуют в процессе гемокоагуляции. Их называют плазменными факторами и обозначают римскими цифрами. Вырабатываются они в организме неактивными, когда активируются, то к римской цифре добавляют букву «a». К нескольким из них добавлено имя больного, у которого впервые была выявлена нехватка этого вещества. Среди них следующие факторы:

  1. I – фибриноген. Образуется в печени, а также в селезенке, костном мозге, лимфоузлах. Преобразуется в нерастворимый белок фибрин при участии тромбина.
  2. II – протромбин. Если его содержание составляет менее 40 процентов от нормы, скорость гемостаза понижается.
  3. III – тканевый тромбопластин. Содержится неактивным в разных тканях организма. Участвует в формировании протромбиназы, с помощью которой протромбин превращается в тромбин.
  4. IV – ионы кальция. Участвуют во всех трех фазах гемокоагуляции. При отсутствии слипание тромбоцитов и ретракция сгустка нарушаются.
  5. V – AC-глобулин. Синтезируется в печени, быстро разрушается. Необходимая концентрация для свертывания – не менее 10%.
  6. VI – исключен из списка.
  7. VII – проконвертин. Производится в печени с участием витамина K. Активируется в самой первой фазе, во время свертывания не расходуется, остается в сыворотке крови. Уровень для гемостаза должен составлять не менее 5%.
  8. VIII – антигемофильный глобулин A. Вырабатывается в печени, селезенке, почках, лейкоцитах, клетках эндотелия. Усиливает влияние фактора IX на фактор X. Необходимая концентрация – около 35%.
  9. IX – фактор Кристмаса. Образуется в печени, при этом необходимо участие витамина K. Долго сохраняется в крови (сыворотке и плазме). Свертывание крови происходит, если его уровень не менее 20%.
  10. X – Стюарта – Прауэра. Вырабатывается неактивным в печени с участием витамина K. Минимальная концентрация для гемостаза – 10-20 процентов.
  11. XI – антигемофильный глобулин C. Образуется в печени, становится активным под действием факторов XII, Флетчера, Фитцджеральда и активирует фактор IX.
  12. XII – Хагемана (фактор контактный). Синтезируется неактивным в печени. Свертывание происходит, даже если его уровень составляет всего 1%.
  13. XIII – фибриназа, или фибринстабилизирующий фактор. В плазме крови находится в соединении с фибриногеном. Активируется при участии тромбина. Для гемостаза достаточно 5 %.
  14. XIV – Флетчера, или прокалликреин. Производится в печени, для свертывания достаточно 1%.
  15. XV – Фитцджеральда – Фложе. Необходимая концентрация – 1%.

Недостаточная активность факторов приводит к плохой свертываемости крови и кровотечениям. Это может произойти при недостатке витамина K, болезнях печени, при нарушении всасывания жиров в кишечнике, сниженном образовании желчи, генетических заболеваниях, таких как гемофилия, при которой кровь не свертывается. Витамин K нужен для выработки II, VII, IX и X факторов. Он содержится в продуктах растительного происхождения, их всасывание происходит в кишечнике.

При свертывании крови необходимы активные вещества, находящиеся в тромбоцитах. Они носят название тромбоцитарных (пластинчатых) факторов и обозначаются арабскими цифрами. К ним относятся следующие:

  1. акцелератор-глобулин;
  2. акцелератор тромбина (влияет на скорость превращения фибриногена);
  3. тромбоцитарный тромбопластин;
  4. антигепариновый;
  5. свертываемый;
  6. тромбостенин;
  7. котромбопластин тромбоцитарный;
  8. антифибринолизин;
  9. фибриностабилизирующий;
  10. серотонин;
  11. АДФ (аденозиндифосфат).

Механизм гемокоагуляции

В свертывании крови задействовано два механизма. Если сосуды мелкие, происходит процесс сосудисто-тромбоцитарный. В этом случае идет образование сгустка тромбоцитарного. Время его образования составляет от 1 до 5 минут.


Во время кровотечения в сосуде формируется волокнистое вещество – фибрин. В его нити попадают кровяные элементы, и образуется тромб

В случае, если поврежден сосуд крупный, первый механизм не подходит. Пробка тромбоцитарная не может выдержать повышенного давления, поэтому необходимо образование сгустка более надежного – фибринового. Вот почему в данном случае механизм задействуется другой – коагуляционный.

Запускается процесс свертывания крови, когда повреждается сосуд и начинаются изменения (физико-химические) плазменного белка фибриногена. В ходе этой цепной реакции активация факторов свертывания, а также формирование комплексов с участием ионов кальция осуществляется последовательно. В результате под действием тромбина фибриноген растворимый преобразуется в нерастворимый. Так появляется волокнистое вещество – фибрин, выпадающий в форме нитей. Будучи тонкими и длинными, они образуют сети, в них попадают форменные клетки крови, таким образом появляется тромб.

Было создано несколько теорий о свертывании крови. В наше время признана теория Шмидта, согласно которой процесс проходит в три стадии.

Фаза первая

Она является наиболее длительной и сложной. Время ее продолжения – примерно 5-10 минут. На этой стадии идет формирование протромбиназы, под воздействием которой становится активным плазменный белок протромбин. Задействуются факторы, как кровяные, так и тканевые. Во время повреждения сосудистых стенок и близлежащих тканей начинает формироваться тромбопластин тканевый. Этот процесс проходит при взаимодействии плазменных факторов с выделяющимися при повреждении тканей веществами. При разрушении пластинок крови начинает образовываться протромбиназа (тромбопластин) кровяная. Это обусловлено сложным взаимодействием и тромбоцитарных факторов, и плазменных с выделяющимися в результате разрушения веществами.

Фаза вторая

На этом этапе происходит переход протромбина в активно действующий тромбин.

Фаза третья

Эта стадия завершающая. Растворимый фибриноген преобразуется в нерастворимый. Сначала с помощью тромбина формируется фибрин-мономер, после чего с участием ионов Ca² получается растворимый фибрин-полимер. С помощью фактора XIII образуется стойкий к расщеплению фибрин-полимер нерастворимый. Он имеет вид нитей. На них и оседают кровяные элементы, в том числе и красные клетки. Таким образом формируется сгусток, закрывающий рану.

Тромбостенин – белок в тромбоцитах – и ионы Ca² уплотняют тромб, который закрепляется в сосуде. Благодаря этому процессу (ретракции) за два-три часа сгусток уменьшается почти наполовину и происходит отжатие плазмы, в которой фибриноген отсутствует. Сгусток уплотняется, рана стягивается. Вместе с ретракцией запускается такой процесс, как фибринолиз, или растворение сгустка. После этого происходит закрытие просвета сосуда. Если невозможно расщепление пробки, она замещается соединительной тканью.

Заключение

Процесс гемокоагуляции – очень важная реакция организма на повреждение кровеносных сосудов, помогающая избежать значительных кровопотерь. При нормальной свертываемости крови проходит достаточно быстро и занимает не более 10 минут. Одновременно со свертывающей системой в крови действует и противосвертывающая, которая препятствует тому, чтобы свертывание происходило внутри сосуда.

В организме человека кровь выполняет ряд функций: транспортную, защитную, гомеостатическую, механическую. Объем циркулирующей крови для каждого индивидуума поддерживается в определенных пределах. При снижении этого объема нарушаются функции крови и работа всего организма в целом.

Для предупреждения потери столь ценной жидкости как кровь, природой в организме человека заложен механизм свертывания крови. Сывороточный белок фибриноген обладает свойством переходить из растворенного состояния в твердое – фибриллярный белок, благодаря чему место повреждения в сосуде закрывается кровяным сгустком за считаные минуты. Таким образом предотвращается кровопотеря и сохраняется нормальная жизнедеятельность организма.

Почему кровь сворачивается?

Внутри сосудов кровь, как известно, кровь имеет жидкое состояние. Процесс свертывания начинается при определенных условиях и его суть состоит в цепочке каскадных ферментативных реакций.

Необходимые для этого вещества белковой природы – протеазы и неферментные белки имеются в плазме крови, а также тканях. Свертывающая система крови включает факторы, которых насчитывается 13, и они неактивны в обычных условиях. Эти факторыпринято обозначать римскими цифрами I – XIII.

Какие пути свертывания крови существуют?

Активация свертывания крови может происходить внешним и внутренним путями. Внешний путь подразумевает поступление в плазму тромбопластина из тканей или лейкоцитов. Другой же путь, внутренний, осуществляется за счет ресурсов плазмы, без поступления извне тромбопластина. Внутренний путь запускается с активации фактора Хагемана, причем пусковым импульсом могут стать различные патологические состояния.

Как происходит свертывание крови?

Травма сосудистой стенки вызывает ее рефлекторный спазм и выход тромбопластина из клеток поврежденного эндотелия. Вследствие чего разворачивается цепь тромбоцитарных реакций и формирование пробки из тромбоцитов. Вместе с этим фибриноген из растворенной формы превращается в видимый фибрин и формирует сеть.

На начальном этапе активируются тромбоциты, они склеиваются между собой – происходит агрегация, а также соединяются с волокнами фибрина. Внутренняя стенка сосуда имеет в своей структуре специальные белки, которые обеспечивают приклеивание к ней тромбоцитов – поверхностные адгезивные белки. Тромбоциты вместе с нитями фибрина прилипают к адгезивным белкам в районе повреждения сосуда.

К агрегатам, состоящим из тромбоцитов, присоединяются другие клетки крови, участвующие в свертывании крови и попадающие в зону разрыва сосуда. Из активированных тромбоцитов в кровь выходят вещества, которые запускают другие факторы. К нитям фибрина прилипают прочие клетки – эритроциты, так образуется кровяной сгусток, который закрывает повреждение в стенке сосуда.

В дальнейшем нити фибрина сокращаются, сгусток уплотняется и превращается в тромб. Разрыв сосуда уменьшается в размере, что способствует его скорейшему заживлению. После восстановления разрыва сосуда кровяной сгусток подвергается фибринолизу.

Во время формирования сгустка крови наряду с активацией факторов свертывания образуются вещества с противоположным эффектом – инактиваторы и начинается самоторможение системы. То есть происходит регуляция свертывания крови. Так организм контролирует процесс образования тромба, чтобы он не распространялся далее необходимых пределов.

Отсутствие или недостаточный уровень как свертывающих факторов, так и антисвертывающих субстратов приводят к патологическим состояниям и могут обернуться для человека серьезной кровопотерей даже при незначительной ссадине.

Что влияет на свертываемость крови?

В первую очередь, скорость образования тромба зависит от уровня содержания факторов свертывания и их активности. Непосредственное участие в активации факторов принимают ионы Ca+. Низкий уровень факторов свертывания, а также тромбоцитов приводит к увеличению времени образования кровяного сгустка. Так, наследственное заболевание гемофилия обусловлено низким уровнем антигемофильного глобулина А или В.

  1. Во-вторых, имеет значение возраст человека. У новорожденных в первую неделю жизни свертывание крови происходит медленно из-за низкого уровня фибриногена, но к двухнедельному возрасту его содержание приближается к равному у взрослых. С возрастом, у пожилых людей, повышается уровень фибриногена в сыворотке крови и растет число активированных тромбоцитов, что ведет к повышению скорости свертывания.
  2. В –третьих, немаловажную роль играет температура. Поскольку свертывание крови представляет собою ферментативный процесс, а для активности ферментов оптимальная температура + 37°С – лихорадочные состояния и переохлаждение могут значительно изменить время образования тромба.

С уважением,


Свертываемость крови должна быть нормальной, поэтому в основе гемостаза лежат равновесные процессы. Нельзя, чтобы наша ценная биологическая жидкость сворачивалась – это грозит серьезными, смертельно опасными, осложнениями (). Напротив, медленное образование кровяного сгустка может обернуться неконтролируемым массивным кровотечением, что также способно повлечь гибель человека.

Сложнейшие механизмы и реакции, привлекая ряд веществ на том или ином этапе, поддерживают это равновесие и таким образом дают возможность организму довольно быстро справляться самому (без привлечения какой-либо посторонней помощи) и восстанавливаться.

Норма свертываемости крови не может быть определена каким-то одним параметром, ведь в этом процессе участвуют многие компоненты , активирующие друг друга. В связи с этим, анализы на свертываемость крови бывают разные, где интервалы их нормальных значений преимущественно зависят от метода проведения исследования, а также в иных случаях – от пола человека и прожитых им дней, месяцев, лет. И вряд ли читателя удовлетворит ответ: «Время свертывания крови составляет 5 – 10 минут» . Остается масса вопросов…

Все важны и все нужны

Остановка кровотечения опирается на архисложный механизм, включающий множество биохимических реакций, к участию в котором привлекается огромное количество различных компонентов, где каждый из них играет свою определенную роль.

схема свертывания крови

Между тем, отсутствие или несостоятельность хоть какого-то одного фактора свертывания или противосвертывания может расстроить весь процесс. Вот всего лишь несколько примеров:

  • Неадекватная реакция со стороны стенок сосудов нарушает кровяных пластинок – , что «почувствует» первичный гемостаз;
  • Низкая способность эндотелия синтезировать и выделять ингибиторы агрегации тромбоцитов (основной – простациклин) и естественные антикоагулянты () сгущает движущуюся по сосудам кровь, что приводит к формированию в кровотоке абсолютно ненужных организму свертков, которые до поры до времени могут спокойно «сидеть» прикрепленными к стеночке какого-либо сосуда. Эти становятся очень опасными, когда отрываются и начинают циркулировать в кровеносном русле – тем самым они создают риск сосудистой катастрофы;
  • Отсутствием такого плазменного фактора, как FVIII, обусловлена болезнь, сцепленная с полом – А;
  • Гемофилия В обнаруживается у человека, если по тем же причинам (рецессивная мутация в Х-хромосоме, которая, как известно, у мужчин только одна) имеет место недостаточность фактора Кристмана (FIX).

Вообще, все начинается еще на уровне поврежденной сосудистой стенки, которая, секретируя вещества, необходимые для обеспечения свертываемости крови, привлекает циркулирующие в кровотоке кровяные пластинки – тромбоциты. К примеру, «зазывающий» тромбоциты к месту аварии и способствующий их адгезии к коллагену – мощному стимулятору гемостаза, должен своевременно начать свою деятельность и хорошо работать, чтобы в дальнейшем можно было рассчитывать на формирование полноценной пробки.

Если тромбоциты на должном уровне используют свои функциональные возможности (адгезивно-агрегационная функция), быстро включаются в работу другие компоненты первичного (сосудисто-тромбоцитарного) гемостаза и в короткие сроки формируют тромбоцитарную пробку, то для того, чтобы остановить кровь, вытекающую из сосуда микроциркуляторного русла, можно обойтись и без особого влияния остальных участников процесса свертывания крови. Однако для образования полноценной пробки, способной закрыть травмированный сосуд, который имеет более широкий просвет, без плазменных факторов организму не справиться.

Таким образом, на первом этапе (сразу после получения травмы сосудистой стенки) начинают идти последовательные реакции, где активация одного фактора дает толчок к приведению в активное состояние остальных. И если где-то чего-то не хватает или фактор оказывается несостоятельным, процесс свертываемости крови затормаживается или обрывается вовсе.

В целом, механизм свертывания состоит из 3 фаз, которые должны обеспечивать:

  • Образование сложного комплекса активированных факторов (протромбиназы) и превращению белка, синтезируемого печенью – , в тромбин (фаза активации );
  • Трансформация растворенного в крови белка – фактора I ( , FI) в нерастворимый фибрин осуществляется в фазе коагуляции ;
  • Завершение процесса свертывания формированием плотного фибринового сгустка (фаза ретракции ).


Анализы на свертываемость крови

Многоэтапный каскадный ферментативный процесс, конечной целью которого является образование сгустка, способного закрыть «брешь» в сосуде, для читателя, наверняка, покажется запутанным и непонятным, поэтому достаточным будет напоминание, что данный механизм обеспечивают различные факторы свертывания, ферменты, Са 2+ (ионы кальция) и многообразие прочих компонентов. Однако в этой связи пациентов довольно часто интересует вопрос: как обнаружить, если с гемостазом что-то не в порядке или успокоиться, зная, что системы работают нормально? Конечно, для таких целей существуют анализы на свертываемость крови.

Самым распространенным специфическим (локальным) анализом состояния гемостаза считается широко известная, нередко назначаемая терапевтами, кардиологами, а также акушерами-гинекологами, наиболее информативная .

Между тем, следует заметить, что проведение такого количества тестов не всегда оправдано. Это зависит от многих обстоятельств: что ищет врач, на каком этапе каскада реакций он сосредотачивает свое внимание, сколько времени в распоряжении медицинских работников и т. д.

Имитация внешнего пути свертываемости крови

Например, внешний путь активации свертывания в лабораторных условиях может имитировать исследование, называемое медиками протромбином по Квику, пробой Квика, протромбиновым (ПТВ) или тромбопластиновым временем (все это разные обозначения одного анализа). В основе указанного теста, который находится в зависимости от факторов II, V, VII, X, лежит участие тканевого тромбопластина (он в ходе работы над образцом крови присоединяется к цитратной рекальцинированной плазме).

Пределы нормальных значений у мужчин и у женщин одного возраста не отличаются и ограничиваются диапазоном 78 – 142%, однако у женщин, ждущих ребенка, этот показатель слегка повышен (но слегка!). У детей, наоборот, нормы находятся в пределах меньших значений и возрастают по мере приближения к совершеннолетию и дальше:

Отражение внутреннего механизма в условиях лаборатории

Между тем, чтобы определить нарушение свертываемости крови, обусловленное сбоем работы внутреннего механизма, тканевой тромбопластин при проведении анализа не применяют – это позволяет плазме использовать исключительно собственные резервы. В условиях лаборатории внутренний механизм прослеживают, ожидая пока кровь, взятая из сосудов кровеносного русла, свернется сама. Начало этой сложной каскадной реакции совпадает с активацией фактора Хагемана (фактор XII). Запуск данной активации обеспечивают различные условия (контакт крови с поврежденной стенкой сосудов, клеточными мембранами, которые претерпели определенные изменения), поэтому ее называют контактной.

Контактная активация возникает и вне организма, например, когда кровь попадает в чужеродную среду и соприкасается с ней (контакт со стеклом в пробирке, инструментарием). Удаление из крови ионов кальция никак не отражается на запуске этого механизма, однако процесс не может завершиться образованием сгустка – он обрывается на этапе активации фактора IX, где без ионизированного кальция уже не обойтись.

Время свертывания крови или время, в течение которого она, пребывая до того в жидком состоянии, выливается в форму эластичного сгустка, зависит от скорости превращения белка фибриногена, растворенного в плазме, в нерастворимый фибрин. Он (фибрин) образует нити, которые удерживают красные кровяные тельца (эритроциты), заставляя их формировать сверток, закрывающий собой отверстие в поврежденном кровеносном сосуде. Время свертывания крови (1 мл, взятый из вены – метод Ли-Уайта) в таких случаях в среднем ограничивается 4 – 6 минутами. Однако норма свертываемости крови, безусловно, имеет более широкий диапазон цифровых (временных) величин:

  1. Кровь, взятая из вены, переходит в форму сгустка от 5 до 10 минут;
  2. Время свертывания по Ли-Уайту в стеклянной пробирке составляет 5 – 7 минут, в пробирке из силикона оно удлиняется до 12- 25 минут;
  3. Для крови, взятой из пальца, нормальными считаются показатели: начало – 30 секунд, окончание кровотечения – 2 минуты.

К анализу, отражающему внутренний механизм, обращаются при первых подозрениях на грубые нарушения свертываемости крови. Тест весьма удобен: проводится быстро (пока кровь течет или сгусток в пробирке образует), обходится без особых реактивов и сложного оборудования, в специальной подготовке пациент не нуждается. Разумеется, нарушения свертываемости крови, обнаруженные подобным образом, дают основание предполагать ряд существенных изменений в системах, обеспечивающих нормальное состояние гемостаза, и заставляют проводить дальнейшие исследования с целью выявления истинных причин патологии.

При увеличении (удлинении) времени свертываемости крови можно подозревать:

  • Дефицит плазменных факторов, предназначенных для обеспечения свертывания, или же врожденную их неполноценность, невзирая на то, что в крови они пребывают на достаточном уровне;
  • Серьезную патологию печени, повлекшую функциональную несостоятельность паренхимы органа;
  • (в фазе, когда способность крови сворачиваться идет на убыль);

Время свертываемости крови удлиняется в случаях использования гепаринотерапии, поэтому пациентам, получающим данный , сдавать анализы, свидетельствующие о состоянии гемостаза, приходится довольно часто.

Рассматриваемый показатель свертываемости крови уменьшает свои значения (укорачивается):

  • В фазе высокой коагуляции () ДВС-синдрома;
  • При других заболеваниях, повлекших патологическое состояние гемостаза, то есть, когда пациент уже имеет нарушения свертываемости крови и отнесен к группе повышенного риска образования тромбов (тромбоз, и т. п.);
  • У женщин, использующих для контрацепции или с целью лечения в течение длительного времени оральные средства, содержащие гормоны;
  • У женщин и мужчин, принимающих кортикостероиды (при назначении кортикостероидных препаратов возраст имеет весьма важное значение – многие из них у детей и пожилых людей способны вызвать существенные изменения со стороны гемостаза, поэтому запрещены к применению в этой группе).

В целом, нормы мало отличаются

Показатели свертываемости крови (норма) у женщин, мужчин и детей (имеется в виду один возраст для каждой категории), в принципе, мало отличаются, хотя отдельные показатели у женщин изменяются физиологически (до, во время и после месячных, в период беременности), поэтому пол взрослого человека все же учитывается при проведении лабораторных исследований. Кроме этого, у женщин в период вынашивания ребенка отдельные параметры даже должны несколько сдвигаться, ведь организму предстоит остановить кровотечение после родов, поэтому свертывающая система начинает готовиться загодя. Исключение в отношении некоторых показателей свертываемости крови составляет категория детей первых дней жизни, например, у новорожденных ПТВ на пару-тройку выше, нежели у взрослых лиц мужского и женского пола (норма взрослых – 11 – 15 секунд), а у недоношенных детей протромбиновое время увеличивается на 3 – 5 секунд. Правда, уже где-то к 4 дню жизни ПТВ снижается и соответствует норме свертываемости крови взрослых людей.

Познакомиться с нормой отдельных показателей свертываемости крови, а, возможно, и сравнить их с собственными параметрами (если тест был проведен сравнительно недавно и на руках имеется бланк с записью результатов исследования), читателю поможет приведенная ниже таблица:

Лабораторный тест Нормальные значения показателя свертываемости крови Используемый материал
Тромбоциты:

У женщин

У мужчин

У детей

180 – 320 х 10 9 /л

200 – 400 х 10 9 /л

150 – 350 х 10 9 /л

Капиллярная кровь (из пальца)

Время свертывания:

По Сухареву

По Ли-Уайту

Начало – 30 - 120 секунд, окончание – 3 - 5 минут

5 - 10 минут

Капиллярная

Кровь, взятая из вены

Длительность кровотечения по Дюке не более 4 минут кровь из пальца
Тромбиновое время (показатель обращения фибриногена в фибрин) 12 – 20 секунд венозная
ПТИ (протромбиновый индекс):

Кровь из пальца

Кровь из вены

90 – 105%

Капиллярная

Венозная

АЧТВ (активированное частичное тромбопластиновое время, каолин-кефалиновое время) 35 - 50 секунд (не коррелирует с полом и возрастом) кровь из вены
Фибиноген:

У взрослых мужчин и женщин

У женщин в последний месяц III триместра беременности

У детей первых дней жизни

2,0 – 4,0 г/л

1,25 – 3,0 г/л

Венозная кровь

В заключение хочется обратить внимание наших постоянных (и новых, конечно) читателей: возможно, прочтение обзорной статьи в полной мере не сможет удовлетворить интерес пациентов, которых затронула патология гемостаза. Люди, которые впервые столкнулись с подобной проблемой, как правило, хотят получить как можно больше сведений о системах, обеспечивающих и остановку кровотечения в нужный момент, и предотвращение образования опасных сгустков, поэтому начинают искать информацию на просторах интернета. Что ж, не следует торопиться – в других разделах нашего сайта дана подробная (и, главное, корректная) характеристика каждому из показателей состояния гемостаза, указан диапазон нормальных значений, а также описаны показания и подготовка к анализу.

Видео: просто о свертывания крови

Видео: репортаж об анализах на свертываемости крови

На ваш вопрос ответит один из ведущих .

В данный момент на вопросы отвечает: А. Олеся Валерьевна, к.м.н., преподаватель медицинского вуза