Модели строения газов жидкостей твердых тел лекции. Строение газов, жидкостей и твердых тел. Особенности структуры растворов. Понятие о «реактивном поле

Жидкость — вещество в состоянии, промежуточном между твердым и газообразным. Это агрегатное состояние вещества, в котором молекулы (или атомы) связаны между собой настолько, что это позволяет ему сохранять свой объем, но недостаточно сильно, чтобы сохранять и форму.

Свойства жидкостей.

Жидкости легко меняют свою форму, но сохраняют объем. В обычных условиях они принимают форму сосуда, в котором находятся.

Поверхность жидкости, не соприкасающаяся со стенками сосуда, называется свободной повер-хностью . Она образуется в результате действия силы тяжести на молекулы жидкости.

Строение жидкостей.

Свойства жидкостей объясняются тем, что промежутки между их молеку-лами малы: молекулы в жидкостях упакованы так плотно, что расстояние между каждыми двумя молекулами меньше размеров молекул. Объяснение поведения жидкостей на основе характера молекулярного движения жидкости было дано советским ученым Я. И. Френкелем. Оно заклю-чается в следующем. Молекула жидкости колеблется около положения временного равновесия, сталкиваясь с другими молекулами из ближайшего окружения. Время от времени ей удается совершить «прыжок», чтобы покинуть своих соседей из ближайшего окружения и продолжать совершать колебания уже среди других соседей. Время оседлой жизни молекулы воды, т. е. вре-мя колебания около одного положения равновесия при комнатной температуре, равно в среднем 10 -11 с. Время одного колебания значительно меньше — 10 -12 - 10 -13 .

Поскольку расстояния между молекулами жидкости малы, то попытка уменьшить объем жидкости приводит к деформации молекул, они начинают отталкиваться друг от друга, чем и объ-ясняется малая сжимаемость жидкости. Текучесть жидкости объясняется тем, что «прыжки» молекул из одного оседлого положения в другое происходят по всем направлениям с одинаковой частотой. Внешняя сила не меняет заметным образом число «прыжков» в секунду, она лишь задает их преимущественное направление, чем и объясняется текучесть жидкости и то, что она принимает форму сосуда.

Вся неживая материя состоит из частиц, поведение которых может отличаться. Строение газообразных, жидких и твердых тел имеет свои особенности. Частицы в твердых телах удерживаются вместе, так как расположены очень тесно друг к другу, это делает их очень прочными. Кроме того, они могут держать определенную форму, так как их мельчайшие частицы практически не двигаются, а только вибрируют. Молекулы в жидкостях находятся довольно близко друг к другу, однако они могут свободно передвигаться, поэтому собственной формы они не имеют. Частицы в газах движутся очень быстро, вокруг них, как правило, много пространства, что предполагает их легкое сжатие.

Свойства и строение твердых тел

Какова структура и особенности строения твердых тел? Они состоят из частиц, которые расположены очень близко друг к другу. Они не могут перемещаться, и поэтому их форма остается фиксированной. Каковы свойства твердого тела? Оно не сжимается, но если его нагреть, то его объем будет увеличиваться с ростом температуры. Это происходит потому, что частицы начинают вибрировать и двигаться, что приводит к уменьшению плотности.

Одной из особенностей твердых тел является то, что они имеют неизменную форму. Когда твердое тело нагревается, движения частиц увеличивается. Быстрее движущиеся частицы сталкиваются более яростно, заставляя каждую частицу толкать своих соседей. Следовательно, повышение температуры обычно приводит к повышению прочности тела.

Кристаллическое строение твердых тел

Межмолекулярные силы взаимодействия между соседними молекулами твердого тела достаточно сильны, чтобы держать их в фиксированном положении. Если эти мельчайшие частицы находятся в высокоупорядоченной комплектации, то такие структуры принято называть кристаллическими. Вопросами внутренней упорядоченности частиц (атомов, ионов, молекул) элемента или соединения занимается специальная наука - кристаллография.

Твердого тела также вызывает особый интерес. Изучая поведение частиц, того, как они устроены, химики могут объяснить и предсказать, как определенные виды материалов будут себя вести при определенных условиях. Мельчайшие частицы твердого тела расположены в виде решетки. Это так называемое регулярное расположение частиц, где немаловажное значение играют различные химические связи между ними.

Зонная теория строения твердого тела рассматривает как совокупность атомов, каждый их которых, в свою очередь, состоит из ядра и электронов. В кристаллическом строении ядра атомов находятся в узелках кристаллической решетки, для которой характерна определенная пространственная периодичность.

Что такое структура жидкости?

Строение твердых тел и жидкостей схоже тем, что частицы, из которых они состоят, находятся на близком расстоянии. Различие состоит в том, что молекулы свободно перемещаются, так как сила притяжения между ними гораздо слабее, нежели в твердом теле.

Какими же свойствами обладает жидкость? Во-первых, это текучесть, во-вторых, жидкость будет принимать форму контейнера, в который ее помещают. Если ее нагреть, объем будет увеличиваться. Из-за близкого расположения частиц друг к другу жидкость не может быть сжата.

Какова структура и строение газообразных тел?

Частицы газа располагаются случайным образом, они находятся так далеко друг от друга, что между ними не может возникнуть сила притяжения. Какими свойствами обладает газ и каково строение газообразных тел? Как правило, газ равномерно заполняет все пространство, в которое он был помещен. Он легко сжимается. Скорость частиц газообразного тела увеличивается вместе с ростом температуры. При этом происходит также повышение давления.

Строение газообразных, жидких и твердых тел характеризуется разными расстояниями между мельчайшими частицами этих веществ. Частицы газа находятся гораздо дальше друг от друга, чем в твердом или жидком состоянии. В воздухе, например, среднее расстояние между частицами примерно в десять раз превышает диаметр каждой частицы. Таким образом, объем молекул занимает всего около 0,1 % от общего объема. Остальные 99,9 % составляет пустое пространство. В противоположность этому частицы жидкости заполняют около 70 % общего объема жидкости.

Каждая частица газа движется свободно по прямолинейному пути, пока она не столкнется с другой частицей (газа, жидкости или твердого тела). Частицы обычно движутся достаточно быстро, а после того как две из них сталкиваются, они отскакивают друг от друга и продолжают свой путь в одиночку. Эти столкновения меняют направление и скорость. Эти свойства газовых частиц позволяют газам расширяться, чтобы заполнить любую форму или объем.

Изменение состояния

Строение газообразных, жидких и твердых тел может меняться, если на них оказывается определенное внешнее воздействие. Они могут даже переходить в состояния друг друга при определенных условиях, например в процессе нагревания или охлаждения.


  • Испарение. Строение и свойства жидких тел позволяют им при определенных условиях переходить в совершенно другое физическое состояние. Например, случайно пролив бензин при заправке автомобиля, можно довольно быстро почувствовать его резкий запах. Как это происходит? Частицы двигаются по всей жидкости, в итоге определенная их часть достигает поверхности. Их направленное движение может вынести эти молекулы за пределы поверхности в пространство над жидкостью, но притяжение будет затягивать их обратно. С другой стороны, если частица движется очень быстро, она может оторваться от других на приличное расстояние. Таким образом, при увеличении скорости частиц, которое случается обычно при нагревании, происходит процесс испарения, то есть преобразования жидкости в газ.

Поведение тел в разных физических состояниях

Строение газов, жидкостей, твердых тел главным образом обусловлено тем, что все эти вещества состоят из атомов, молекул или ионов, однако поведение этих частиц может быть совершенно разным. Частицы газа хаотичным образом удалены друг от друга, молекулы жидкости находятся близко друг к другу, но они не так жестко структурированы, как в твердом теле. Частицы газа вибрируют и передвигаются на высоких скоростях. Атомы и молекулы жидкости вибрируют, перемещаются и скользят мимо друг друга. Частицы твердого тела также могут вибрировать, но движение как таковое для них не свойственно.

Особенности внутренней структуры

Для того чтобы понять поведение материи, нужно сначала изучить особенности ее внутренней структуры. Каковы внутренние различия между гранитом, оливковым маслом и гелием в воздушном шарике? Простая модель структуры материи поможет найти ответ на этот вопрос.

Модель является упрощенным вариантом реального предмета или вещества. Например, до того как начинается непосредственное строительство, архитекторы сначала конструируют модель строительного проекта. Такая упрощенная модель не обязательно предполагает точное описание, но в то же время она может дать приблизительное представление того, что будет собой представлять та или иная структура.

Упрощенные модели

В науке, однако, моделями не всегда выступают физические тела. За последнее столетие наблюдался значительный рост человеческого понимания о физическом мире. Однако большая часть накопленных знаний и опыта основана на чрезвычайно сложных представлениях, например в виде математических, химических и физических формул.

Для того чтобы разобраться во всем этом, нужно быть достаточно хорошо подкованным в этих точных и сложнейших науках. Ученые разработали упрощенные модели для визуализации, объяснения и предсказания физических явлений. Все это значительным образом упрощает понимание того, почему некоторые тела имеют постоянную форму и объем при определенной температуре, а другие могут их менять и так далее.

Вся материя состоит из мельчайших частиц. Эти частицы находятся в постоянном движении. Объем движения связан с температурой. Повышенная температура свидетельствует об увеличении скорости движения. Строение газообразных, жидких и твердых тел отличается свободой передвижения их частиц, а также тем, насколько сильно частицы притягиваются друг к другу. Физические зависят от его физического состояния. Водяной пар, жидкая вода и лед имеют одинаковые химические свойства, но их физические свойства значительно отличаются.

Модели строения газов, жидкостей и твёрдых тел

Все вещества могут существовать в трёхагрегатных состояниях .

Газ – агрегатное состояние, в котором вещество не имеет определённого объёма и формы. В газах частицы вещества удалены на расстояния, значительно превышающие размер частицы. Силы притяжения между частицами малы и не могут удерживать их друг возле друга. Потенциальная энергия взаимодействия частиц считается равной нулю, то есть она много меньше кинетической энергии движения частиц. Частицы хаотично разлетаются, занимая весь объём сосуда, в котором находится газ. Траектории частиц газа представляют собой ломаные линии (от одного удара до другого частица движется равномерно и прямолинейно). Газы легко сжимаются.

Жидкость – агрегатное состояние, в котором вещество имеет определённый объём, но не сохраняет своей формы. В жидкостях расстояния между частицами сравнимы с размерами частиц, поэтому силы взаимодействия частиц в жидкостях велики. Потенциальная энергия взаимодействия частиц сравнима с их кинетической энергией. Но этого не достаточно для упорядоченного расположения частиц. В жидкостях наблюдается лишь взаимная ориентация соседних частиц. Частицы жидкостей совершают хаотические колебания около некоторых положений равновесия и через некоторое время меняются местами с соседями. Эти скачки объясняют текучесть жидкостей.

Твёрдое тело – агрегатное состояние, в котором вещество имеет определённый объём и сохраняет свою форму. В твёрдых телах расстояния между частицами сравнимы с размерами частиц, но меньше, чем у жидкостей, поэтому силы взаимодействия частиц огромны, что и позволяет веществу сохранять форму. Потенциальная энергия взаимодействия частиц больше их кинетической энергией, поэтому в твёрдых телах наблюдается упорядоченное расположение частиц, называемое кристаллической решёткой. Частицы твёрдых тел совершают хаотические колебания около положения равновесия (узла кристаллической решётки) и очень редко меняются местами с соседями. Кристаллы обладают характерным свойством – анизотропией – зависимостью физических свойств от выбора направления в кристалле.

Молекулярно-кинетические представления о строении вещества объясняют всё многообразие свойств жидкостей, газов и твёрдых тел. Между частицами вещества существуют электромагнитные взаимодействия - они притягиваются и отталкиваются друг от друга с помощью электромагнитных сил. На очень больших расстояниях между молекулами эти силы ничтожно малы.

Силы взаимодействия молекул

Но картина меняется, если уменьшать расстояние между частицами. Нейтральные молекулы начинают ориентироваться в пространстве так, что их обращённые друг к другу поверхности начинают иметь противоположные по знаку заряды и между ними начинают действовать силы притяжения. Это происходит, когда расстояние между центрами молекул больше суммы их радиусов.

Если продолжать уменьшать расстояние между молекулами, то они начинают отталкиваться в результате взаимодействия одноимённо заряженных электронных оболочек. Это происходит, когда сумма радиусов взаимодействующих молекул больше расстояния между центрами частиц.

То есть на больших межмолекулярных расстояниях преобладает притяжение, а на близких - отталкивание. Но существует определённое расстояние между частицами, когда они находятся в положении устойчивого равновесия (силы притяжения равны силам отталкивания). В этом положении у молекул минимальная потенциальная энергия. Молекулы также обладают кинетической энергией, так как находятся всё время в непрерывном движении.

Таким образом, прочность связей взаимодействия между частицами отличает три состояния вещества: твёрдое тело, газ и жидкость, и объясняет их свойства.

Возьмём воду в качестве примера. Размер, форма и химический состав частиц воды остаётся тем же самым, является ли она твёрдой (льдом) или газообразной (паром). Но то, как эти частицы движутся и расположены, различно для каждого состояния.

Твёрдые вещества

Твёрдые вещества сохраняют свою структуру, их можно расколоть или разбить, приложив усилие. Вы не можете пройти через стол, потому что и вы и стол являются твёрдыми. Твёрдые частицы обладают наименьшим количеством энергии из трёх традиционных состояний материи. Частицы расположены в определённой структурной последовательности с очень небольшим пространством между ними.

Они удерживаются вместе в равновесии и могут только вибрировать вокруг фиксированного положения. В связи с этим твёрдые вещества имеют высокую плотность и фиксированную форму и объем. Если оставить стол в течение нескольких дней в покое, он не расширится, и тонким слоем древесины по всему полу не заполнит комнату!

Жидкости

Так же, как в твёрдом веществе, частицы в жидкости упакованы близко друг к другу, но располагаются случайным образом. В отличие от твёрдых тел, человек может проходить через жидкость, это связано с ослаблением силы притяжения, действующей между частицами. В жидкости частицы могут перемещаться друг относительно друга.

Жидкости имеют фиксированный объём, но не имеют фиксированной формы. Они будут течь под действием гравитационных сил . Но некоторые жидкости более вязкие, чем другие. У вязкой жидкости сильнее взаимодействие между молекулами.

Молекулы жидкости обладают гораздо большей кинетической энергией (энергией движения), чем твёрдое тело, но гораздо меньше, чем газ.

Газы

Частицы в газах находятся далеко друг от друга и расположены случайным образом. Это состояние материи имеет самую высокую кинетическую энергию, так как между частицами практически отсутствуют силы притяжения.

Молекулы газов находятся в постоянном движении во всех направлениях (но только по прямой линии), сталкиваются друг с другом, и со стенками сосуда, в котором находятся, - это вызывает давление.

Газы также расширяются, чтобы полностью заполнить объём сосуда, независимо от его размера или формы - газы не имеют фиксированной формы или объёма.

1. Модель строения жидкостей. Насыщенные и ненасыщенные пары; зависимость давления насыщен­ного пара от температуры; кипение. Влажность воз­духа; точка росы, гигрометр, психрометр.

Испарение - парообразование, происходящее при любой температуре со свободной поверхности жидкости. При тепловом движении при любой температуре кинетическая энергия молекул жидкости не значительно превышает потенциальную энергию их связи с другими молекулами. Испарение сопровождается охлаждением жидкости. Скорость испарения зависит: от площади открытой поверхности, температуры, концентрации молекул вблизи жидкости.

Конденсация - процесс перехода вещества из газообразного состояния в жидкое.
Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала испарения концентрация вещества в газообразном состоянии достигнет такого значения, при котором число молекул, возвращающихся в жидкость, становится равным числу молекул, покидающих жидкость за то же время. Устанавливается динамическое равновесие между процессами испарения и конденсации вещества.

Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называют насыщенным паром . (Паром называют совокупность молекул, покинувших жидкость в процессе испарения.) Пар, находящийся при давлении ниже насыщенного, называют ненасыщенным.

Вследствие постоянного испарения воды с поверхностей водоемов, почвы и растительного покрова, а также дыхания человека и животных в атмосфере всегда содержится водяной пар. Поэтому атмосферное давление представляет собой сумму давления сухого воздуха и находящегося в нем водяного пара. Давление водяного пара будет максимальным при насыщении воздуха паром. Насыщенный пар в отличие от ненасыщенного не подчиняется законам идеального газа. Так, давление насыщенного пара не зависит от объема, но зависит от температуры. Эта зависимость не может быть выражена простой формулой, поэтому на основе экспериментального изучения зависимости давления насыщенного пара от температуры составлены таблицы, по которым можно определить его давление при различных температурах.

Давление водяного пара, находящегося в воздухе при данной температуре, называют абсолютной влажностью . Поскольку давление пара пропорционально концентрации молекул, можно определить абсолютную влажность как плотность водяного пара, находящегося в воздухе при данной температуре, выраженную в килограммах на метр кубический (р).

Относительной влажностью называют отношение плотности водяного пара (или давления), находящегося в воздухе при данной температуре, к плотности (или давлению) водяного пара при той же температуре, выраженное в процентах, т. е.

Наиболее благоприятной для человека в средних климатических широтах является относительная влажность 40-60%.

Понижая температуру воздуха, можно довести находящийся в нем пар до насыщения.

Точкой росы называют температуру, при которой пар, находящийся в воздухе, становится насыщенным. При достижении точки росы в воздухе или на предметах, с которыми он соприкасается, начинается конденсация водяного пара. Для определения влажности воздуха используются приборы, которые называются гигрометрами и психрометрами.