Классификация химических реакций. Химия: теоретические основы. Вещество, химическая реакция

Для образования активного комплекса нужно преодолеть некоторый энергетический барьер, затратив энергию Е А. Эта энергия и есть энергия активации – некоторая избыточная энергия, по сравнению со средней при данной температуре энергией, которой должны обладать молекулы для того, чтобы их столкновения были эффективными.

В общем случае для химической реакции А + В = С +Д переход от исходных веществ А и В к продуктам реакции С и Д через состояние активного комплекса А + В = А¼В = С + D схематически можно представить в виде энергетических диаграмм (рис. 6.2).


Энергия активации Е А – один из основных параметров, который характеризует скорость химического взаимодействия. Она зависит от природы реагирующих веществ. Чем больше Е А, тем меньше (при прочих равных условиях) скорость реакции. При повышении температуры число активных частиц сильно возрастает, благодаря чему резко увеличивается скорость реакции.

Обычно реакции между веществами с прочными ковалентными связями характеризуются большими значениями Е А и идут медленно, например:

Низкими значениями Е А и очень большими скоростями характеризуются ионные взаимодействия в растворах электролитов. Например:

Ca +2 + SO = CaSO 4 .

Объясняется это тем, что разноименно заряженные ионы притягиваются друг к другу и не требуется затрат энергии на преодоление сил отталкивания взаимодействующих частиц.

Влияние катализатора

Изменение скорости реакции под воздействием малых добавок особых веществ, количество которых в ходе процесса не меняется, называется катализом.

Вещества, изменяющие скорость химической реакции, называются катализаторами (вещества, изменяющие скорость химических процессов в живых организмах – ферменты). Катализатор в реакциях не расходуется и в состав конечных продуктов не входит.

Химические реакции, протекающие в присутствии катализатора, называются каталитическими. Различают положительный катализ – в присутствии катализатора скорость химической реакции возрастает - и отрицательный катализ (ингибирование) – в присутствии катализатора (ингибитора) скорость химической реакции замедляется.



1. Окисление сернистого ангидрида в присутствии платинового катализатора:

2SO 2 + O 2 = 2SO 3 – положительный катализ.

2. Замедление процесса образования хлороводорода в присутствии кислорода:

H 2 + Cl 2 = 2HCl – отрицательный катализ.

Различают: а) гомогенный катализ – реагирующие вещества и катализатор образуют однофазную систему; б) гетерогенный катализ – реагирующие вещества и катализатор образуют систему из разных фаз.

Механизм действия катализатора. Механизм действия положительных катализаторов сводится к уменьшению энергии активации реакции. При этом образуется активный комплекс с более низким уровнем энергии и скорость химической реакции сильно возрастает. На рис. 6.3 представлена энергетическая диаграмма химической реакции, протекающей в отсутствие (1) и в присутствии (2) катализатора.

Если медленно протекающую реакцию А + В = АВ вести в присутствии катализатора К, то катализатор вступает в химическое взаимодействие с одним из исходных веществ, образуя непрочное промежуточное соединение: А + К = АК.

Энергия активации этого процесса мала. Промежуточное соединение АК – реакционноспособно, оно реагирует с другим исходным веществом, при этом катализатор высвобождается и выходит из зоны реакции:



АК +В = АВ + К.

Суммируя оба процесса, получаем уравнение быстро протекающей реакции: А + В + (К) = АВ + (К).

Пример. Окисление сернистого ангидрида с участием катализатора NO: 2SO 2 + O 2 = 2SO 3 – медленная реакция;

При введении катализатора – NO – образуется промежуточное соединение: 2NO + O 2 = 2NO 2 .

В гетерогенном катализе ускоряющее действие связано с адсорбцией. Адсорбция – явление поглощения газов, паров, растворенных веществ поверхностью твердого тела. Поверхность катализатора неоднородна. На ней имеются так называемые активные центры, на которых происходит адсорбция реагирующих веществ, что увеличивает их концентрацию.

Есть и такие вещества, которые усиливают действие катализатора, хотя сами катализаторами не являются. Эти вещества называются промоторами.


ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Работа добавлена на сайт сайт: 2015-07-05

">24. "> ">Признаки обратимых и необратимых реакций. Критерии равновесия. Константа равновесия. Принцип Ле-Шателье.

;color:#000000;background:#ffffff">1. Реакцию называют ;color:#000000;background:#ffffff">обратимой ;color:#000000;background:#ffffff">, если её направление зависит от концентраций веществ — участников реакции. Например N ;vertical-align:sub;color:#000000;background:#ffffff">2 ;color:#000000;background:#ffffff"> + 3H ;vertical-align:sub;color:#000000;background:#ffffff">2 ;color:#000000;background:#ffffff"> = 2NH ;vertical-align:sub;color:#000000;background:#ffffff">3 ;color:#000000;background:#ffffff"> при малой концентрации аммиака в газовой смеси и больших концентрациях азота и водорода происходит образование аммиака; напротив, при большой концентрации аммиака он разлагается, реакция идёт в обратном направлении. По завершении обратимой реакции, т. е. при достижении равновесия химического, система содержит как исходные вещества, так и продукты реакции.

;color:#000000;background:#ffffff">Необратимые реакции ;color:#000000;background:#ffffff"> — реакции, при которых взятые вещества нацело превращаются в продукты реакции, не реагирующие между собой при данных условиях, например ;background:#ffffff">, ;color:#000000;background:#ffffff">горение ;background:#ffffff"> ;color:#000000;background:#ffffff">углеводородов ;background:#ffffff">, ;color:#000000;background:#ffffff">образование ;color:#000000;background:#ffffff">малодиссоциирующих ;background:#ffffff"> ;color:#000000;background:#ffffff">соединений, выпадение осадка, образование газообразных веществ.

">Химическое равновесие "> - состояние системы, в котором скорость прямой реакции (" xml:lang="en-US" lang="en-US">V ;vertical-align:sub">1 ">) равна скорости обратной реакции (" xml:lang="en-US" lang="en-US">V ;vertical-align:sub">2 ">). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

">Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (" xml:lang="en-US" lang="en-US">K ;vertical-align:sub">1 ">) и обратной (" xml:lang="en-US" lang="en-US">K ;vertical-align:sub">2 ">) реакций.

" xml:lang="en-US" lang="en-US">K = K ;vertical-align:sub" xml:lang="en-US" lang="en-US">1/ " xml:lang="en-US" lang="en-US">K ;vertical-align:sub" xml:lang="en-US" lang="en-US">2 " xml:lang="en-US" lang="en-US">= ([C] ;vertical-align:super" xml:lang="en-US" lang="en-US">c " xml:lang="en-US" lang="en-US"> [D] ;vertical-align:super" xml:lang="en-US" lang="en-US">d " xml:lang="en-US" lang="en-US">) / ([A] ;vertical-align:super" xml:lang="en-US" lang="en-US">a " xml:lang="en-US" lang="en-US"> [B] ;vertical-align:super" xml:lang="en-US" lang="en-US">b " xml:lang="en-US" lang="en-US">)

"> Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции.

">Смещение химического равновесия.

">1. Иземенение концентрации реаг. В-в

  1. ">Увеличение конц исх в-в сдвигает вправо
  2. ">Увеличение продуктов сместит равновесие влево

">2. Давление (только для газов)

  1. ">Увеличение давл. Смещает равновесие в сторону в-в занимающих меньший объём.
  2. ">Уменьшение давл смещает равновесие в сторону в-в занимающих больший объём

">3. Температура.

  1. ">Для экзотермических р-ий повыш. Т смещает влево
  2. ">Для эндотермических повышение Т смещает вправо.
  3. ">Катализаторы не оказывают влияние на хим. Равновесие, а лишь ускоряет его наступление

">Принцип Ле-Шателье ">если на систему находящуюся в состоянии динамического равновесия, оказать какое-либо воздействие, то преимущественно получается та реакция которая препятствует этому воздействию

" xml:lang="en-US" lang="en-US">N2+O2↔NO+ ∆H

" xml:lang="en-US" lang="en-US">→ t◦→

" xml:lang="en-US" lang="en-US">↓← ↓ t◦←

" xml:lang="en-US" lang="en-US"> ← p-

Cтраница 1


Исходные вещества: натрий углекислый (натрий карбат) безводный для спектрального анализа, МРТУ 6 - 09 - 6170 - 69, хч и фосфорная ортокислота, ГОСТ 6552 - 58, хч.  

Исходные вещества: барий азотнокислый (барий нитрат), ГОСТ 51468 - 72, техн.  

Исходное вещество было синтезировано карбоксиметилированием М - р-ок-сиэтилэтилендиамина и последующей дегидратацией азеотропной перегонкой с ксилолом или толуолом. Для полимеризации мономер суспендируют в диокса-не с водой, кипятят 5 - 10 час с обратным холодильником, а затем очищают.  

Исходные вещества, применяемые в объемном анализе для определения нормальности растворов и установления их титров, будут указаны при рассмотрении отдельных методов анализа.  

Изменение молекулярного.| Изменение группового состава крекинг-остатка в процессе коксования смеси грозненских парафинистых нефтей от начала деструктивного разложения (365 С до образования коксового пирога (430 С.  

Исходное вещество А способно превращаться двумя или более независимыми путями, которые приводят к образованию одинаковых или различных продуктов.  

Исходные вещества (фосфор и кислород) электронейтральные. Атом фосфора, отдавая пять электронов, становится положительно пятизарядным ионом (Р 5); фосфор окисляется и является восстановителем. Атом кислорода, принимая два электрона, превращается в отрицательно заряженный ион (О-2); кислород восстанавливается и является окислителем.  

Исходные вещества и процессы должны быть приспособлены к самоорганизации, стабильны за счет систем обратных связей, которая, в свою очередь, является динамической структурой.  

Исходные вещества, составляющие основу молекулы конечного продукта, называют основным сырьем. Таким сырьем являются прежде всего ароматические углеводороды: бензол, толуол, нафталин, а также фенол и крезолы. Эти вещества содержатся в продуктах переработки каменного угля - коксовом газе и каменноугольной смоле.  

Исходные вещества, используемые для получения промежуточного продукта или органического красителя, но не составляющие основу его молекулы, называют вспомогательным сырьем.  

Исходное вещество для производства Аш-кислоты - нафталин.  

Исходное вещество взвешивают и, определив по табличным данным растворимость, подсчитывают примерное количество воды, необходимое для его растворения. Вещество помещают в стакан, коническую колбу или в фарфоровую чашку и приливают к нему воду, нагретую до определенной температуры.  

Исходное вещество помещают в фарфоровую или в кварцевую лодочку /, которую вставляют в реактор 2 (фарфоровая или кварцевая трубка) и нагревают в токе водорода до требуемой температуры. Концы трубки закрывают резиновыми или корковыми пробками, в которые вставляют с одного конца трубку, подводящую водород, а с другого - трубку, отводящую пары воды и непрореагировавший водород. Предварительно установку проверяют на герметичность. Для этого конец газоотводной трубки погружают на 4 - 5 см в воду и пропускают водород.  

Исходные вещества (окислы), а также реактор (тигель) необходимо предварительно просушить при 150 - 200 С. После этого окислы растирают в порошок и отделяют на сите от неразмельченных частичек.  

Исходные вещества отвешивают в соответствии с уравнением реакции на аналитических весах и растирают их смесь в течение 15 - 20 мин в фарфоровой или агатовой ступке. Затем смесь пересыпают в фарфоровый тигель или лодочку и прокаливают.  

Исходные вещества Активированный комплекс Продукты реакции - раздел Химия, Общая химия Для Образования Активного Комплекса Нужно Преодолеть Некоторый Энергетический...

Энергия активации Е А – один из основных параметров, который характеризует скорость химического взаимодействия. Она зависит от природы реагирующих веществ. Чем больше Е А, тем меньше (при прочих равных условиях) скорость реакции.

Обычно реакции между веществами с прочными ковалентными связями характеризуются большими значениями Е А и идут медленно, например:

Низкими значениями Е А и очень большими скоростями характеризуются ионные взаимодействия в растворах электролитов. Например:

Ca +2 + SO= CaSO 4 .

Объясняется это тем, что разноименно заряженные ионы притягиваются друг к другу и не требуется затрат энергии на преодоление сил отталкивания взаимодействующих частиц.

Конец работы -

Эта тема принадлежит разделу:

Общая химия

Государственное образовательное учреждение высшего профессионального образования.. тюменский государственный нефтегазовый университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая химия
Курс лекций Тюмень 2005 УДК 546(075) Севастьянова Г.К., Карнаухова Т. М.Общая химия: Курс лекций. – Тюмень: ТюмГНГУ, 2005. – 210 с.

Основные законы химии
1. Закон сохранения массы веществ (М.В. Ломоносов; 1756 г.): масса веществ, вступивших в реакцию, равна массе веществ, образовавшихся в результате реакции. 2. За

Общие положения
Согласно современным представлениям, атом – это наименьшая частица химического элемента, являющаяся носителем его химических свойств. Атом электрически нейтрален и состоит из положительно заряженно

Развитие представлений о строении атома
До конца 19 столетия большинство учёных представляло атом как неразложимую и неделимую частицу элемента – "конечный узел" материи. Считалось также, что атомы неизменны: атом данного элеме

Модель состояния электрона в атоме
В соответствии с квантово – механическими представлениями, электрон – это такое образование, которое ведёт себя и как частица, и как волна, т.е. он обладает, как и другие микрочастицы, корпускул

Квантовые числа
Для характеристики поведения электрона в атоме введены квантовые числа: главное, орбитальное, магнитное и спиновое. Главное квантовое число n определяет энергию электрона на энергетичес

Электронные конфигурации (формулы) элементов
Запись распределения электронов в атоме по уровням, подуровням и орбиталям получила название электронной конфигурации (формулы) элемента. Обычно электронная формула приводится для основного

Порядок заполнения электронами уровней, подуровней, орбиталей в многоэлектронных атомах
Последовательность заполнения электронами уровней, подуровней, орбиталей в многоэлектронных атомах определяют: 1) принцип наименьшей энергии; 2) правило Клечковского; 3)

Электронные семейства элементов
В зависимости от того, какой подуровень последним заполняется электронами, все элементы делятся на четыре типа – электронные семейства: 1. s – элементы; заполняется электронами s –

Понятие об электронных аналогах
Атомы элементов с одинаковым заполнением внешнего энергетического уровня носят название электронных аналогов. Например:

Периодический закон и периодическая система элементов Д.И. Менделеева
Важнейшим событием химии в 19 веке было открытие периодического закона, сделанное в 1869 г. гениальным русским ученым Д. И. Менделеевым. Периодический закон в формулировке Д. И. Менделеева гласи

Структура периодической системы химических элементов Д. И. Менделеева
Элементы в периодической системе располагаются в последовательности возрастания порядковых номеров Z от 1 до 110. Порядковый номер элемента Z соответствует заряду ядра его атома, а также числу д

Периодическая система Д.И. Менделеева и электронная структура атомов
Рассмотрим связь между положением элемента в периодической системе и электронным строением его атомов. У каждого последующего элемента периодической системы на один электрон больше, чем у предыдуще

Периодичность свойств элементов
Так как электронное строение элементов изменяется периодически, то соответственно периодически изменяются и свойства элементов, определяемые их электронным строением, такие, как атомный радиус, эне

Теория метода валентных связей
Метод разработан В. Гейтлером и Дж. Лондоном. Большой вклад в его развитие внесли также Дж. Слейтер и Л. Полинг. Основные положения метода валентных связей: 1. Химическая связь

Ковалентная связь
Химическая связь между атомами, осуществляемая обобществленными электронами, называется ковалентной. Ковалентная связь (означает – «совместно действующая») возникает за счет образования общи

Насыщаемость ковалентной связи
Насыщаемость ковалентной связи (валентные возможности атома, максимальная валентность) характеризует способность атомов участвовать в образовании определенного ограниченного числа ковалентных св

Направленность ковалентной связи
Согласно МВС наиболее прочные химические связи возникают в направлении максимального перекрывания атомных орбиталей. Поскольку атомные орбитали имеют определённую форму, их максимал

Полярность и поляризуемость химической связи
Ковалентная связь, в которой обобществленная электронная плотность (обобществленные электроны, связующее электронное облако) симметрична по отношению к ядрам взаимодействующих атомов, называется

Полярность молекул (типы ковалентных молекул)
Следует отличать полярность молекулы от полярности связи. Для двухатомных молекул типа АВ эти понятия совпадают, как это уже показано на примере молекулы HCl. В таких молекулах чем больше разнос

Ионная связь
При взаимодействии двух атомов, обладающих весьма различными электроотрицательностями, общая пара электронов может быть практически полностью смещена к атому с большей электроотрицательностью. В ре

Металлическая связь
Само название «металлическая связь» указывает, что речь пойдет о внутренней структуре металлов. Атомы большинства металлов на внешнем энергетическом уровне содержат небольшое число валентн

Гидроксиды
Среди многоэлементных соединений важную группу составляют гидроксиды – сложные вещества, содержащие гидроксогруппы OH. Некоторые из них (основные гидроксиды) проявляют свойства оснований - N

Кислоты
Кислоты – это вещества, диссоциирующие в растворах с образованием катионов водорода и анионов кислотного остатка (с позиций теории электролитической диссоциации). Кислоты классифици

Основания
Основаниями с позиций теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид - ионов OH ‾ и ионов металлов (исключение NH4OH

Первый закон термодинамики
Взаимосвязь между внутренней энергией, теплотой и работой устанавливает первый закон (начало) термодинамики. Его математическое выражение: Q = DU + A, или для беско

Тепловой эффект химической реакции. Термохимия. Закон Гесса
Все химические процессы сопровождаются тепловыми эффектами. Тепловым эффектом химической реакции называется теплота, выделяемая или поглощаемая в результате превращения исходных веществ

Энтропия
Если на систему оказать внешнее воздействие, в системе происходят определенные изменения. Если после снятия этого воздействия система может вернуться в первоначальное состояние, то процесс является

Свободная энергия Гиббса
Все химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии. Связь между энтальпией и энтропией системы устанавливает термодинамическая функция состояния, которая называет

Свободная энергия Гельмгольца
Направление протекания изохорных процессов (V = const и Т = const) определяется изменением свободной энергии Гельмгольца, которую называют также изохорно-изотермический потенциал (F): DF =

Закон действующих масс
Зависимость скорости химической реакции от концентрации реагирующих веществ определяется законом действующих масс. Этот закон установлен норвежскими учеными Гульдбергом и Вааге в 1867 г. Он формули

Зависимость скорости химической реакции от температуры
Зависимость скорости химической реакции от температурыопределяется правилом Вант-Гоффа и уравнением Аррениуса. Правило Вант-Гоффа:при увеличении температуры на каждые 1

Влияние катализатора
Изменение скорости реакции под воздействием малых добавок особых веществ, количество которых в ходе процесса не меняется, называется катализом. Вещества, изменяющие скорость хими

Общие представления о химическом равновесии. Константа химического равновесия
Химические реакции, в результате которых хотя бы одно из исходных веществ расходуется полностью, называются необратимыми, протекающими до конца. Однако большинство реакций являют

Смещение химического равновесия. Принцип Ле Шателье
Химическое равновесие остается неизменным до тех пор, пока постоянны параметры, при которыхоно устано

Фазовые равновесия. Правило фаз Гиббса
Гетерогенные равновесия, связанные с переходом вещества из одной фазы в другую без изменения химического состава, называются фазовыми. К ним относятся равновесия в процессах испарен

Твердые исходные вещества могут вступать в реакцию друг с другом и при пространственном их разделении. В связи с этим в отличие от обычных твердофазных реакций не обязательно использовать исходные вещества в стехиометрических количествах. Конечный продукт независимо от соотношения исходных веществ будет обладать стехиометрическим составом.
Твердые исходные вещества и продукты реакции не влияют на смещение гетерогенного химического равновесия.
Твердые исходные вещества могут вступать в реакцию друг с другом и при пространственном их разделении. В связи с этим в отлич. Конечный продукт независимо от соотношения исходных веществ будет обладать стехиометрическим составом.
Реакции между твердыми исходными веществами могут быть ускорены благодаря тому, что твердые вещества связываются друг с другом за счет транспортной реакции. Можно предвидеть, что этот принцип будет перенесен на многочисленные реакции между твердыми веществами. Вместе с тем особенно благоприятно то, что можно подобрать соответствующие транспортные реакции, исходя из простых теоретических представлений.
Гранулометрический состав загружаемых частиц твердого исходного вещества и гидродинамический режим процесса не изменяются.
В химической реакции участвуют только те молекулы твердого исходного вещества AI, которые входят в заполненные веществом AZ адсорбционные центры.
Таким образом, состав расплава при непрерывном поступлении твердых исходных веществ определяется соотношением PiSy / p2sH, и при различных размерах кусков извести и углерода мы получим разный состав расплава.
Для получения водной вытяжки 50 - 80 мг твердого исходного вещества кипятят в течение нескольких минут с 3 мл воды, которая пополняется по каплям по мере упаривания раствора. Водная вытяжка, имеющая нейтральную реакцию (нейтральная водная вытяжка), может содержать мешающие катионы, которые нужно удалить содой так, как это делают в случае, если исследуемый объект - жидкость (см. стр. В результате нейтрализации щелочной (после действия содой) жидкости и отделения осадка получают приготовленный раствор.
Кривые скорости-время для разложения оксалата серебра. Г110 С. точками обозначены результаты опытов без перерывов, кружками - опыт с перерывами в 60 мин. (/ и 30 мин. (/ /. Такие опыты показывают в то же время, что простого смешения твердого исходного вещества с твердым продуктом может быть недостаточно для обнаружения автокаталитического действия последнего.
Химико-технологический процесс, при котором газообразные исходные вещества продувают через отверстия снизу аппарата, а находящиеся в нем твердые исходные вещества при этом как бы кипят, находясь все время во взвешенном состоянии. При этом реакции протекают в самом кипящем слое.
Химика технологический процесс, при котором газообразные исходные вещества продувают через отверстия снизу аппарата, а находящиеся в нем твердые исходные вещества при этом как бы кипят, находясь все время во взвешенном состоянии. При этом реакции протекают в самом кипящем слое.
Типичные кривые а f (т процесса термической диссоциации твердых тел. Объяснения даны в тексте. При описании хода термической диссоциации скорость реакции чаще всего ставится в зависимость от состава твердой фазы, выраженного степенью превращения (распада) а твердого исходного вещества. На рис. VIII-12 представлены наиболее характерные зависимости а от времени реакции.
В табл. 22 сведены данные, которые касаются возможности нахождения анионов в охарактеризованных выше аналитических фракциях, получающихся в результате приготовления раствора из подлежащего анализу твердого исходного вещества.

В исследованной с точки зрения теории Фольмера дегидратации дигидрата окса-лата марганца , для которой рентгенографически было доказано образование аморфного продукта и его последующая кристаллизация, рост ядер твердого, аморфного продукта наблюдался и до образования кристалллического продукта, что доказывает особые каталитические свойства поверхности раздела: твердое исходное вещество / твердый продукт и для рентгенографически аморфного состояния. Кристаллизация аморфного продукта может иметь, однако, значение для объяснения зависимости скорости от упругости пара при разложении кристаллогидратов. В этих случаях образование труднопроницаемого для молекул воды слоя аморфного продукта может вести к снижению скорости реакции.
Фт - поток твердого вещества, поступающего в аппарат, кг / час; Фг (0) - поток газообразного вещества, поступающего в аппарат, кг / час; Фг - поток газообразного вещества, вступающего в химическое взаимодействие, кг / час; Fr - объем, занимаемый газовой фазой в реакционном объеме аппарата, м3; GT - вес твердого исходного вещества в реакционном объеме аппарата, кг; GT - вес газообразного исходного вещества в реакционном объеме аппарата, кг; с кв - эквивалентная концентрация газообразного исходного вещества в реакционном объеме аппарата, кг / м8; а - стехиометрический коэффициент перехода от потока вещества Фт к потоку Фг; & г, / сг - коэффициенты выгрузки твердой и газообразной фазы, l / час; К - константа скорости реакции; F (п) - функция, отражающая порядок реакции; X - выходная координата (температура); Та - постоянная времени тепловой модели реакционного объема аппарата; К7 - коэффициент усиления тепловой модели реакционного объема аппарата.
Смесь 5 1 г циклопентадиенилмарганецтрикарбонила, 13 7 г треххло-ристого фосфора, 4 25 г хлористого алюминия и 15 мл изопентана при интенсивном перемешивании нагрета и выдержана при температуре 45 - 50 С в течение 3 час. До нагревания смесь представляет собой суспензию твердых исходных веществ в растворе желтого цвета.
Важно установить, какие ионы в пробе отсутствуют. Предварительные испытания) в основном проводят с твердыми исходными веществами, растворы выпаривают.
Очень часто скорость растворения исходного материала так незначительна или продукт реакции так мало растворим, что новая фаза плотно осаждается на первоначальной и благодаря этому ее внешняя форма повторяет форму исходного вещества. Такие превращения, которые происходят на поверхности раздела твердого исходного вещества и ведут к получению твердых конечных продуктов, называются топохилшческими реакциями в узком смысле слова. В противоположность реакциям, протекающим в объеме раствора, степень дисперсности продуктов реакции в этом случае подобна дисперсности исходных веществ. Топохимический способ рассмотрения поэтому особен -, но применим при описании катализаторов, электролитическом выделении металлов и в вопросах коррозии.
Если давление пара способствует реакции между твердыми веществами, то надо ожидать подобного и от химических транспортных реакций. Какие же возможности предоставляют транспортные реакции как средство взаимодействия между твердыми исходными веществами.
В твердофазных реакциях превращение может начинаться только в объеме фазы, а затем развиваться на границе раздела между новой и старой фазами. Такие реакции, где зона или фронт превращения проходит по поверхности раздела твердое исходное вещество - твердый продукт, называются топохимическими. Примером таких реакций является выветривание кристаллогидратов. Еще Фа-радей заметил, что хорошо ограненные прозрачные кристаллы Cu2SO4 - 5H2O не теряют воду в сухом воздухе в течение длительного времени. Если же на их поверхность нанести царапину или сделать надлом, то сразу начинается быстрая дегидратация кристалла, которая всегда распространяется от поврежденного места.
То обстоятельство, что многие анионы могут быть обнаружены дробным путем, еще не означает, что обнаружение анионов является более легкой задачей, чем открытие катионов. Даже при том ограниченном числе анионов, которое изучается в данном учебнике, анализ представляет большие трудности, если для исследования дано твердое исходное вещество, нерастворимое в воде. Такое вещество подлежит обработке содой (содовая вытяжка), что связана с рядом осложнений в работе.
При написании реакций между растворами электролитов всякий раз надо представить себе, нет ли какой-нибудь причины, мешающей реальному протеканию той или иной реакции. Например, если раствор электролита взаимодействует с твердым веществам и при этом один из продуктов малорастворим, то реакция может быстро прекратиться за счет того, что на поверхности твердого исходного вещества образуется слой тоже твердого продукта реакции, препятствующего дальнейшему ее протеканию. Именно поэтому для получения углекислого газа действием кислоты на мрамор берут соляную, а не серную кислоту, так как в случае серной кислоты мрамор быстро покрывается слоем гипса (CaSO4 - 2H2O) и реакция практически не идет.
Для взаимодействия висмута с фтором используют реактор с кипящим слоем. Заимствованная из техники методика синтеза в кипящем слое имеет следующие преимущества: быстрое установление теплового равновесия в реакционной смеси, отсутствие спекания твердых продуктов реакции, хороший тепловой обмен со стенками трубки, большая поверхность твердых исходных веществ и поэтому быстрое превращение.
Для системы г - т увеличение поверхности соприкосновения фаз достигается измельчением твердой фазы. Газообразное вещество приводят в соприкосновение с измельченным исходным веществом самыми разнообразными способами, например, твердые частицы вещества располагают на полках реактора, а поток газа движется над полками. В других случаях тонко измельченное твердое исходное вещество распыляют в потоке газообразного исходного вещества в полом объеме; таким образом сжигают пылевидное топливо в топках паровых котлов.
В быстро идущих промышленных процессах реакции в смесях твердых веществ протекают обычно со скоростями в тысячи раз большими, чем это было бы возможно при непосредственном взаимодействии твердых фаз. Толщина слоя образующегося продукта практически одинакова по всей поверхности покрываемого им зерна. Это объясняется тем, что реакции, идущие между твердыми исходными веществами, на самом деле протекают с участием газообразных или жидких фаз.
В развитии химии твердофазных реакций часто поднимались дискуссии по вопросу о том, могут ли реагировать между собой твердые вещества без участия жидкости или газа. Этот вопрос сегодня решен в пользу существования чисто твердофазных реакций. Интересно, однако, что можно показать на целом ряде превращений с твердыми исходными веществами, что все-таки какая-либо жидкая или газообразная фаза участвует в качестве посредника реакции. Однако следует избегать обобщений в этой области - напротив того, необходимо экспериментально исследовать состояние системы в каждом отдельном случае. Будников и Гинстлинг особенно детально занимались подобными исследованиями.
Если проблема исходного вещества для нефтегазообразования в целом может считаться решенной, то проблема механизма нефтегазообразования, являющаяся ключевой, в деталях еще требует своего решения. Общность состава органического вещества, осадочных пород и углеводородов (УВ) является важным аргументом в пользу биосферного источника нефти и газа. Очевидна и роль тепловой энергии (прогрева) для получения жидких и газовых УВ из твердого исходного вещества. Эти обстоятельства позволили создать концепцию об очагах генерации УВ и сформулировать представления о главных фазах газо - и нефтеобразования, получивших распространение во всем мире.

Скорость реакций, протекающих без участия газообразных и жидких фаз, столь мала, что они не могут иметь большого практического значения в быстро идущих промышленных процессах. Но на практике реакции в смесях твердых веществ идут обычно со скоростями в тысячи раз большими, чем это было бы возможно при непосредственном взаимодействии твердых веществ. Толщина слоя образующегося продукта практически одинакова по всей поверхности покрываемого им зерна. Это объясняется тем, что реакции, идущие между твердыми исходными веществами, на самом деле протекают с участием газообразных или жидких фаз.
Скорость таких реакций, протекающих без участия газообразных и жидких фаз, столь мала, что они не могут иметь большого практического значения в быстро идущих промышленных процессах, осуществляемых, в частности, в производстве солей. Реакции в смесях твердых веществ на практике идут обычно со скоростями в тысячи раз большими, чем это было бы возможно при непосредственном взаимодействии твердых веществ. Толщина слоя образующегося продукта практически одинакова по всей поверхности покрываемого им зерна. Это объясняется тем, что реакции, идущие между твердыми исходными веществами, на самом деле протекают с участием газообразных или жидких фаз.
Скорость реакций, протекающих без участия газообразных и жидких фаз, столь мала, что они не могут иметь большого практического значения в быстро идущих промышленных процессах. Но на практике реакции в смесях твердых веществ идут обычно со скоростями в тысячи раз большими, или, чем это было бы возможно при непосредственном взаимодействии твердых веществ. Толщина слоя образующегося продукта практически одинакова по всей поверхности покрываемого им зерна. Это объясняется тем, что реакции, идущие между твердыми исходными веществами, на самом деле протекают с участием газообразных или жидких фаз.
Невероятно, чтобы эти напряжения сжатия, по отношению к которому твердые тела являются более прочными, чем по отношению к растяжению, достигли величины, необходимой для разрушения микроскопических кристаллов. Прямые опыты по исследованию зависимости скорости разложения перманганата калия от величины поверхности, которая обратно пропо. Это показывает, что дробление само по себе не всегда является причиной наблюдаемого ускорения реакции. Объяснение ускорения реакции твердых веществ существованием цепных разветвленных реакций наталкивается также на некоторые трудности. Условия в твердой фазе существенно отличаются от условий в газовой или жидкой фазе своей гетерогенностью. Если цепной механизм и существует, то такая реакция все равно ограничивается поверхностью раздела твердого исходного вещества и продукта реакции. Следовательно, и при наличии цепного механизма возникает вопрос о причинах особых свойств поверхности раздела: исходное твердое вещество / твердый продукт.