Когда использование антидотов эффективно. Действия антидотов (противоядий). Противоядия от токсинов грибов

Владыка А.С., Вегержинский А.Г., Ситник А.Г., Родослав Л.С., Фельдман А.В.
г. Одесса

«Всякий, кто пьет это средство, выздоравливает… исключая тех, кому оно не помогает, и они умирают. Поэтому ясно, что оно неэффективно только в неизлечимых случаях.»

Современная фармакология динамична и отображает прогресс медико-биологических и фармацевтических наук. Ежегодно на фармацевтический рынок поступают десятки новых оригинальных лекарственных средств, сотни препаратов с новыми торговыми названиями в разнообразных лекарственных формах. По мере увеличения количества лекарственных средств все более усложняется оказание помощи пациентам. Необходимо помнить, что лекарственные средства наряду с терапевтическим действием могут вызвать целый ряд побочных эффектов, варьирующих от тривиальных (легкая тошнота и рвота) до фатальных (апластическая анемия, анафилактический шок и другие, которые могут привести к гибели пациента). Смертность пациентов, находящихся на стационарном лечении, в результате побочного действия или передозировки лекарственного средства менее 1% (хроника ВОЗ). Однако, лекарственные препараты становятся легко доступными обычному потребителю, не имеющему медицинского образования, в результате чего около 5% случаев неотложной госпитализации, по поводу отравлений, связано с развитием побочных эффектов лекарственных веществ.

При отравлениях некоторыми лекарственными препаратами и различными химическими средствами проводится симптоматическая терапия, тогда как наиболее целесообразно применение антидотов для адекватной элиминации яда из организма. Антидоты предназначены для изменения кинетических свойств токсических веществ, их поглощения или удаления из организма, уменьшения токсического воздействия на рецепторы и в результате этого - улучшения функционального и жизненного прогноза отравлений. Специфические антидоты существуют всего для нескольких групп лекарственных веществ, также существуют еще две группы антидотов: антидоты, являющиеся фармакологическими антагонистами и антидоты, ускоряющие биотрансформацию яда в нетоксические метаболиты. По классификации предложенной Лужниковым Е.А. выделяют 4 основные группы антидотов:

Развитие методов реанимации и симптоматической терапии внесло значительные изменения в тактику лечения острых отравлений и повысило роль антидотов в клинической токсикологии.

Предложенная ниже таблица содержит перечень антидотов и их синонимов, необходимых при наиболее часто встречающихся отравлениях. Надеемся, что она станет удобным справочным пособием для практикующих врачей и студентов медицинских ВУЗов.

Препарат вызвавший

отравление (синоним)

(синоним)

Примечания

Барбитураты:

Гексенал

Тиопентал-

натрий

Фенобарбитал

(Люминал)

Циклобарбитал

(Фанодорм)

Циклобарбитан+

Диазепам

(Реладорм)

Бемегрид

(Ahypnon, Etimid, Eukraton, Glutamisol,

Malysol, Megimide,

Mikedimide, Megibal, Zentraleptin)

Налоксон

Флумазенил

10 мл 0,5% р-ра внутривенно медленно, 3-4 инъекции до восстановления рефлексов.

Оказывает стимулирующее влияние на ЦНС,

эффективен при угнетении дыхания и кровообращения различного происхождения.

Эффективен только в случаях отравления в легкой

степени. При тяжелых отравлениях не исключает необходимости проведения сердечно-легочной реанимации, на фоне которой противопоказан,

как и другие стимуляторы ЦНС (кофеин, коразол, кордиамин и т.д.).

Бензодиазепины

Алпразолам

(Алзолам,

Кассадан)

Диазепам

(Седуксен,

Сибазон,

Реланиум)

Мезапам

Рудотель)

Феназепам

Нитразепам

(Эуноктин,

Радедорм)

Оксазепам

(Нозепам,

Тазепам)

-Хлордиазепоксид

(Хлозепид,

Элениум) и др.

Флумазенил

(Анексат)

Является конкуренным антагонистом бензодиазепинов, обладает короткой продолжительностью действия. Препарат применяют внутривенно 0,2 мг в течение 30 с до общей дозы 3-5 мг.

Противопоказан пациентам с эпилепсией, при тяжелых смешанных отравлениях бензодиазепинами и проконвульсантами (аминофиллин, амитриптилин).

Наркотические

анальгетики:

Бупренорфин

(Норфин)

Буторфанол

(Морадол)

Гидрокодон

Диаморфин

(Героин)

Кодеин

Метадон

Морфин

Налбуфин

Омнопон

Пентазоцин

Пиритрамид

Трамадол

(Трамал)

Тримеперидин

(Промедол)

Фентанил

Эстоцин

Этилморфин

(Дионин) и др.

Налоксон

Налмефен

Налтрексон

Naltrexone, hydrochloride, Trexan)

Леворфанол

Налорфин

(Анторфин ,

Anarcon, Lethidron, Nalorphine hydrochloride,

Вводится внутривенно 0,4-2 мг (можно внутримышечно, эндотрахеально), при необходимости эту дозу вводят повторно каждые 2-3 минуты до достижения клинического эффекта.

Эффективен также при алкогольной коме и различных видах шока, что связано, повиди-

мому, с активацией при шоке и некоторых

формах стресса эндогенной опиодной системы,

а также способностью налоксона уменьшать гипотензию.

Назначают 0,25 мкг/кг внутривенно каждые 2-5 мин.(не превышая 1 мкг/кг). Также используется при послеоперационном угнетении дыхания.

По сравнению налоксоном отличается большей активностью; эффективен при приеме внутрь,

действие при приеме внутрь наступает через

1-2 часа и продолжается 24-48 ч.

Являются слабыми агонистами-антагонистами,

они сами могут активировать опиатные

рецепторы (напр. сигма- рецепторы, при

возбуждении которых возникают галлюцинации),

поэтому их используют крайне редко.

Вводят 1-2 мл 0,5% раствора, при отсутствии

эффекта инъекции повторяют с промежутками 10-

15 минут, максимальная доза - 0,04 мг (8 мл 0,5%

р-ра.

Этиленгликоль

30% р-р 50-100 мл внутрь, 5% р-р 100-400 мл внутривенно

М-холиноблокаторы

Атропин

Бесалол

Метацина йодид

Платифиллина

гидротартрат

-Скопаломина г/х и др.

Физостигмина салицилат

Галантамин

(Нивалин

Аминостигмин

0,5-2 мг внутривенно в течении 5 минут под контролем ЭКГ.

Облегчает проведение возбуждения в

Нервномышечных синапсах и восстанавливает

нервномышечную проводимость, блокированную

курареподобными препаратами

антидеполяризующего действия (тубокурарин,

диплацин и др.), действие деполяризующих

веществ (дитилина) усиливает.

Вводят 2 мг внутривенно.

Варфарин

Протамина сульфат

Витамин К 1

1 мг протамина сульфата нейтрализует 1 мг

гепарина. Вводят внутривенно капельно или

струйно (медленно) в дозе 50 мг, при необходи- мости через15 минут введение можно повторить, максимальная доза - 150 мг.

Эффективен при некоторых видах геморрагий,

связанных с гепариноподобными нарушениями свертывания крови. В редких случаях

идиопатической и врожденной гипергепаринемии,

при введении протамина сульфата, может

наблюдаться«парадоксальный» эффект- усиление

кровоточивости. 10 мг внутривенно (в/м, п/к),

в течение 20 минут.

5-10 мг внутривенно

Парацетамол

Ацетилцистеин

(Флуимуцил)

Метионин

(Acimetion, Athinon,

Banthionine, Meonine, Metione, Thiomedon)

Предотвращает превращение гепатотоксического метаболита - бензохинонеймина, 140 мг/кг внутрь.

Перорально.

Относится к числу незаменимых аминокислот,

необходимых для поддержания роста и азотистого

равновесия в организме. Обладает липотропным

эффектом (удаление из печени избытка жира),

учавствует в синтезе адреналина, креатина и др.

биологически важных соединений.

Путем метилирования и транссульфирования,

метионин обезвреживает токсичные продукты.

Сердечные гликозиды

Дигиталис

Дигибайнд

Флакон Дигибайнд содержит 38 мг очищенных дигоксин- специфичных Fab-фрагментов, которые связывают примерно 0,5 мг дигоксина.

Необходимое кол-во препарата расчиты- вают по формуле: концентрация дигитоксина в сыво- ротке (нг/мл) х масса тела (кг) : 1000

Препарат вводят внутривенно капельно.

Противо-туберкулезные препараты:

Гидразином

Изониазид

Фтивазид

Витамин В 6

Внутривенно капельно, не более 5 г за 30-60 мин.

Препараты железа

-Железа фумарат (Хеферол, Ферронат)

-Жектофер (Эктофер)

Железа сульфат

(Ферро-градумет, Тардиферон)

Железо-декстран

(Ферролек-плюс)

Железа сахарат

(Феррум Лек)

Дефероксамин (Десферал , Desferal, Deferoxaminum methansulfonat, Desferan, Desferex, Desferin, Desferrioxamin, DFOM)

10-15 мг/кг/ч. Не вводить более 6 г в сутки!

При введении в организм способствует удалению железа из железосодержащих белков (ферритина и гемосидерина), но не из гемоглобина и же-

Соли тяжелых металов

Висмут

Мышьяк

Ртуть

Свинец

Хром

-медь и ее соединения

-Смесь продуктов деления урана

Плутоний

(Dimaval, Unitiol)

Комплексообразующие

соединения

(десферал, артамин, бианодин и др.)

Тиосульфат натрия

Натрия-кальция эдетат

(Хелатон, ЭДТА, Мозатил, Тетрацемин,

Тетацин-кальций)

Купренил

(пеницилламин)

Динатриевая соль этилендиаминтетра-уксусной кислоты

(Трилон Б , ЭДТУ , Calsol, Dinatriumedetal,

Endrate, Irgalon, Kalex, Prochelate, Questrex,

Tetracemindinatriumi,

Titriplex,Trilon B,

Tyclarosol,Versene)

Пентацин

(Calcii trinatrii pentetas, Calcium trisodium pentetate, Penthamil, кальция тринатрия пентетат , пентамил )

Менее активен при отравление свинцом.

5% - 10 мл, затем вводится по 5 мл каждые 3 часа

в течение 2-3 суток.

10% раствор 10-20 мл внутривенно

30%-100,0 внутривенно

Внутривенно вводят капельным методом в изотоническом растворе натрия хлорида или в 5% растворе глюкозы. Разовая доза составляет 2,0, суточная-4,0. При введении 2 раза в день промежуток между вливаниями должен быть не менее трех часов.

Можно вводить параллельно с унитиолом.

Иногда применяется для лечения некоторых форм эктопических аритмий,особенно возникших в

связи с передозировкой сердечных гликозидов. При быстром введении препарата

физиологические механизмы не успевают

устранить понижение уровня кальция в сыворотке

и может развиться острая тетания.

Не оказывает заметного влияния на выведение урана, полония, радия и радиоактивного стронция и свинца. Препарат не влияет на содержание в крови калия.

Разовая доза составляет 0,25 г препарата (5 мл 5% раствора). В острых случаях разовая доза может быть повышена до 1,5 г. Вводят внутривенно, медленно, наблюдая за состоянием сердечно-сосудистой системы .

Калия перманганат

Витамин С

Метиленовый синий

5%-10,0 внутривенно

1%-100,0 внутривенно

Дихлорэтан

N-ацетилцистеин

Ускоряет дехлорирование дихлорэтана, обезвреживает его токсичные метаболиты. Внутрь

140 мг/кг.

Органические кислоты

Сульфат магния

Гидроокись

алюминия

Алмагель

Алмагель-А

20-25 г на 200 мл воды внутрь.

4% 20-25 мл, 4-6 раз в сутки

2-4 чайные ложки 4-6 раз в сутки.

250 мл

Не давать бикарбоната, опасно в связи

с образованием СО 2 !

Тетацин-кальций

Тиосульфат натрия

10%-10,0 в 300 мл 5% р-ра глюкозы, внутривенно

30%-100,0 внутривенно

Угарный газ

(окись углерода)

Гипербарическая оксигенация

Аскорбиновая кислота

Эуфиллин

1-1,5 атм, 40 мин.

5% р-р, 20-30 мл внутривенно

5%-500,0 внутривенно

2,4%-10,0, внутривенно

Акрихинин

Тетраэтиламмоний

(Уотропин)

Вводится внутривенно на 40% глюкозе по 10 мл

Фосфорорганические соединения

Дипироксим

(Trimedoxini bromidum, Trimedoxini bromide,

Пралидоксим (Pralidoxime)

Изонитразин

Реактиватор холинэстеразы. Применяют

в комбинации с холинолитическими препаратами (атропин,апрофен и др.) приотравлениях ФОС.

Вводят подкожно или внутривенно по 1 мл 15% раствора. При необходимости вводят повторно с интервалом между введениями 1-2 часа в общем до 6-8 мл.

Нельзя применять до завершения первичных реанимационных мероприятий и введения атропина для подавления избыточной секреции бронхов. Вводите разведенным до 5% раствора внутривенно в течение 5 мин. Если сохраняется слабость мышц, можно ввести повторную дозу спустя 60 минут.

Внутримышечно по 3 мл 40% раствора обязательно в сочетании с атропином. При тяжелом отравлении вводят повторно каждые 30-40 минут в общем до 10 мл.

Натрия нитрит

Амилнитрит

Натрия тиосульфат

(Натрия гипосульфит, Natrium hyposulfurosum,

Natrium thiosulfuricum)

Хромоспан

Гидроксикобаламин

Этилендиамин-

тетраацетат

6 мг/кг в течении 3-5 мин. внутривенно

По 0,3 мл ингаляционно двукратно с интервалом 3 мин

Вызывают образование метгемоглобина.

250 мг/кг внутривенно.

Активирует превращение цианидов в тиоцианаты.

Оказывают противотоксическое, противовоспа-лительное и десенсибилизирующее действие.

Образуют с цианидами нетоксичные циангидрины.

40% р-р внутривенно

Вызывает немедленную детоксикацию цианида.

Образует прямые хелатные соединения с цианидом

(прямо хелатирует цианид).

Синильная кислота

Амилнитрит

Пропилнитрит

Образует в крови метгемоглобин, связывающий

ион CN, и предупреждает этим поражение

тканевых дыхательных ферментов.

Применяются ингаляционно.

Грибы ядовитые

тип отравления:

Гиромитриновый

Мускариновый

- антихолинергический

- галлюциногенный

Пиридоксин

Физостигмин

Диазепам

25 мг/кг в/в. Терапия направленная на преодоление печеночной недостаточности

0,01 мг/кг в/в. При необходимости повторное введение.

0,5-1 мг в/в

5-10 мг в/в

Укусы змей

Паук каракурт

«черная вдова»

Антивенин

Антивенин

(Latrodectus mactans)

10 тыс ЕД в /в

20-40 мл в/в минимальная степень отравления

50-90 мл в/в средняя степень отравления

100-150 мл в/в тяжелая степень отравления

2,5 мл в/в (в/м), после проведения пробы на гиперчувствительность

Учитывая, что применяемые для лечения одного и того же отравления антидоты разных групп имеют различный механизм действия и основная масса антидотов, за исключением токсикотропных и антитоксических иммунопрепаратов, не оказывают прямого действия на яд, рекомендуется комплексная антидотная терапия в виде последовательного применения препаратов. Применение антидотов не исключает необходимости проведения терапии, направленной на ускоренное выведение яда из организма.

Для проведения эффективной детоксикации организма необходимо своевременное проведение посиндромной реаниматологической коррекции нарушений жизненно важных функций организма (токсического шока, острой дыхательной недостаточности и др.).

Необходимо помнить о возможных побочных реакциях и осложнениях со стороны самого антидота, вероятность развития которых увеличивается при необдуманном использовании этих лечебных средств. При ошибочном введении антидота в большой дозе может проявиться его токсическое влияние на организм.

Антидотная терапия сохраняет свою эффективность только в токсигенной (ранней) фазе острых отравлений, длительность которой зависит от токсико-кинетических особенностей данного токсического вещества, качество проведенного именно на этом этапе лечения оказывает решающее влияние на прогноз и исход заболевания.

Эффективность антидотной терапии значительно снижена в терминальной стадии острых отравлений при развитии тяжелых нарушений системы кровообращения и газообмена, что требует одновременного проведения реанимационных мероприятий, направленных на детоксикацию организма и на восстановление гомеостаза организма в целом.

Список литературы

    Браташ В.И. Диагностика, клиника и лечение критических состояний при острых отравлениях и эндотоксикозах. - М.: Медицина, 1998. - сс.112 -124.

    Дон Х. Принятие решения в интенсивной терапии. - М.: Медицина, 1995. - сс. 24-25

    Ершов А. Ф. Клиника, диагностика, патогенез и вопросы лечения острых отравлений производными барбитуровой кислоты. (Клинико-эксперементальное исследование). Автореф. дис. … д-р мед. наук - М., 1984.

    Зайчик А.Ш., Чурилов А.П. Основы патохимии. - СПб., 2000. - 687 с.

    Комаров Б.Д., Лужников Е.А., Шимашко И.И. Хирургические методы лечения острых отравлений, М.: Медицина, 1981. - сс.21-24

    Компендиум. Лекарственные средства 1999/2000 - Киев, 1999. - 1200 с.

    Копосов Е.С. // в кн. Цыбуляка Г.Н. (ред.): Реаниматология - М. Медицина. 1976. - сс. 217 - 242.

    Лудевич Р., Клос К. Острые отравления. - М.: Медицина, 1983. - 560 с.

    Лужников Е. А. // в кн. Голикова С.Н. (ред.): Неотложная помощь при острых отравлениях. - М.: Медицина, 1977. - сс. 72 -81.

    Лужников Е. А. Современные принципы детоксикационной терапии острых отравлений. // Анест. и реаниматология. - 1988. - №6. - сс. 4-6.

    Лужников Е.А. Клиническая токсикология. - М., 1994. - сс. 113-118

    Лужников Е.А., Гольдфарб Ю.С., Мусселиус С.Г. Детоксикационная терапия. - СПб, 2000.-192 с.

    Marino P. L. Интенсивная терапия (перевод с английского дополненный), - М., 1998. - 639 с.

    Михайлов И.Б. Основы рациональной фармакотерапии. - СПб., 1999. - 480 с.

    Неговский В.А.Основы реаниматологии. - Ташкент: Медицина, 1977. - 590 с.

    Неотложные состояния у детей // Сидельников В.М., Київ: Здоров’я, 1983. - сс225-241

    Пал Чики // в кн. Петера Варж и др. (ред.): Теория и практика интенсивной терапии, - Киев: Здоров’я, 1983. - сс.646 - 650.

    Реаниматология // Цибульняк Г.Н., М.: Медицина, 1976., - сс. 217-242

    Савина А.С. Острые отравления лекарственными веществами. - М., 1992. - сс.73-79

    Сметнев А.С., Петрова Л.И. Неотложные состояния в клинике внутренних заболеваний. - М.: Медицина, 1977. - сс. 158-179

    Справочник ВИДАЛЬ, 1995. - 1168 с.

    Справочник ВИДАЛЬ, 1998. - 1600 с.

    Справочник по мерам первой медицинской помощи и профилактике отравлений, связанных с морской перевозкой опасных грузов // Лобенко А.А., Владыка А.С., Борозенко О.В., Новиков А.А., Папенко А.В., Олешко А.А. - Одесса, 1992. - 82 с.

    Справочник по реаниматологии. ред. Клявзуника И.В. - Минск: Беларусь, 1978. - сс. 133-155

    Сусла Г.М., Мазур Г., Кунньон Р.Е., Саффредини Э.Ф., Оржибен Ф.П., Хоффман В.Д., Шелхамер Д.Г.Фармакотерапия неотложных состояний. - СПб.- М., 1999. - 633 с.

    Трещинский А.И., Заброда Г.С. // в кн. Буднастяна (ред.): Справочник по анестезиологии и реаниматологии. - М. Медицина, 1982. - сс. 310 - 317.

    Тараховский М.Л., Коган Ю.С., Мизюкова И.Г., Светлый С.С., Терехов И.Т. Лечение острых отравлений. - Киев: Здоров’я, 1982. - 231 с.

    Фрид М., Грайнс С. Кардиология в таблицах и схемах. - М., 1996. - 736 с.

    Чепкий Л.П., Жалко-Титаренко В.Ф. Анестезиология и реаниматология. - К. Вища школа, 1984. - сс. 327 -338.

    Цыбульняк Г.Н. Реанимация на догоспитальном этапе, - Л.: «Медицина», 1980. - 232 с.

Please enable JavaScript to view the

Действия антидотов (противоядий)

Применение антидота позволяет воспрепятствовать воздействию яда на организм, нормализовать основные функции организма или затормозить развивающиеся при отравлении функциональные или структурные нарушения.

Антидоты бывают прямого и непрямого действия.

Антидот прямого действия

Прямого действия - осуществляется непосредственное химическое или физико-химическое взаимодействие яда и противоядия.

Основные варианты - сорбентные препараты и химические реагенты.

Сорбентные препараты - защитное действие осуществляется за счет неспецифической фиксации (сорбции) молекул на сорбенте. Результат - снижение концентрации яда, взаимодействующего с биоструктурами, что приводит к ослаблению токсичного эффекта.

Сорбция происходит за счет неспецифических межмолекулярных взаимодействий - водородных и Ван - дер - Ваальсовых связей (не ковалентных).

Сорбцию возможно осуществлять с кожных покровов, слизистых оболочек, из пищеварительного тракта (энтеросорбция), из крови (гемосорбция, плазмосорбция). Если яд уже проник в ткани, то применение сорбентов не эффективно.

Примеры сорбентов: активированный уголь, каолин (белая глина), окись Zn, ионообменные смолы.

  • 1 грамм активного угля связывает несколько сотен мг стрихнина.
  • ? Химические противоядия - в результате реакции между ядом и противоядием образуется нетоскичное или малотоксичное соединение (за счет прочных ковалентных ионных или донорно-акцепторных связей). Могут действовать в любом месте - до проникновения яда в кровь, при циркуляции яда в крови и после фиксации в тканях. Примеры химических противоядий: для нейтрализации попавших в организм кислот используют соли и оксиды, дающие в водных растворах щелочную реакцию - K2CO3, NaHCO3, MgO.
  • - при отравлении растворимыми солями серебра (например AgNO3) используют NaCl, который образует с солями серебра нерастворимый AgCl.
  • - при отравлении ядами, содержащими мышьяк используют MgO, сульфат железа, которые химически связывают его
  • - при отравлении марганцовокислым калием KMnO4 , который является сильным окислителем, используют восстановитель - перекись водорода H2O2
  • - при отравлении щелочами используют слабые органические кислоты (лимонная, уксусная)
  • - отравления солями плавиковой кислоты (фторидами) применяют сульфат кальция CaSO4, при реакции получается мало растворимый CaF2
  • - при отравлении цианидами (солями синильной кислоты HCN) применяются глюкоза и тиосульфат натрия, которые связывают HCN. Ниже приведена реакция с глюкозой.

Очень опасна интоксикация тиоловыми ядами (соединениями ртути, мышьяка, кадмия, сурьмы и и др. тяжелых металлов). Тиоловыми такие яды называют по механизму их действия - связыванию с тиоловыми (-SH) группами белков:


Связывание металла с тиоловыми группами белков приводит к разрушению структуры белка, что вызывает прекращение его функций. Результат - нарушение работы всех ферментных систем организма.

Для нейтрализации тиоловых ядов применяются дитиоловые антидоты (доноры SH- групп). Механизм их действия представлен на схеме:


Образовавшийся комплекс яд-антидот выводится из организма, не причиняя ему вреда.

Еще один класс антидотов прямого действия - антидоты - комплексоны (комплексообразователи).

Они образуют прочные комплексные соединения с токсичными катионами Hg, Co, Cd, Pb . Такие комплексные соединения выводятся из организма, не причиняя ему вреда. Среди комплексонов наиболее распространены соли этилендиаминтетрауксусной кислоты (ЭДТА), прежде всего этилендиаминтетраацетат натрия.

В составе механизма их действия лежит непосредственная реакция между ядом и антидотом. Химические антидоты могут быть как местного, так и резорбтивного действия.

Местное действие. Если физические антидоты оказывают малоспецифический антидотный эффект, то химические обладают довольно высокой специфичностью, что связано с самим характером химической реакции. Местное действие химических антидотов обеспечивается в результате реакций нейтрализации, образования нерастворимых соединений, окисления, восстановления, конкурентного замещения и образования комплексов. Первые три механизма действия имеют особую важность и изучены лучше других.

Хорошим примером нейтрализации ядов служит использование щелочей для противодействия случайно проглоченным или попавшим на кожу сильным кислотам. Нейтрализующие антидоты применяются и для осуществления реакций, в результате которых образуются соединения, имеющие низкую биологическую активность. Например, в случае попадания в организм сильных кислот рекомендуется провести промывание желудка теплой водой, в которую добавлен оксид магния (20 г/л). В случае отравления плавиковой или лимонной кислотой больному дают проглотить кашицеобразную смесь хлорида кальция и оксида магния. При попадании едких щелочей следует провести промывание желудка 1 % раствором лимонной или уксусной кислоты. Во всех случаях попадания в организм едких щелочей и концентрированных кислот следует иметь в виду, что рвотные средства противопоказаны. При рвоте происходят резкие сокращения желудочных мышц, а поскольку эти агрессивные жидкости могут поразить желудочную ткань, возникает опасность прободения.

Антидоты, образующие нерастворимые соединения, которые не могут проникнуть через слизистые оболочки или кожу, обладают избирательным действием, т. е. эффективны только в случае отравления определенными химическими веществами. Классическим примером антидотов такого типа могут служить 2,3–димеркаптопропанол, образующий нерастворимые, химически инертные сульфиды металлов. Он дает положительный эффект при отравлении цинком, медью, кадмием, ртутью, сурьмой, мышьяком.

Таннин (дубильная кислота) образует нерастворимые соединения с солями алкалоидов и тяжелых металлов. Токсиколог должен помнить, что соединения таннина с морфином, кокаином, атропином или никотином обладают различной степенью стабильности.

После приема любых антидотов этой группы необходимо производить промывание желудка для выведения образовавшихся химических комплексов.

Большой интерес представляют антидоты комбинированного действия, в частности состав, в который входят 50 г таннина, 50 г активированного угля и 25 г оксида магния. В этом составе сочетаются антидоты как физического, так и химического действия.

В последние годы привлекает к себе внимание местное применение тиосульфата натрия. Он используется в случаях отравления мышьяком, ртутью, свинцом, цианистым водородом, солями брома и йода.

Тиосульфат натрия применяется внутрь в виде 10 %-го раствора (2–3 столовые ложки).

Местное применение антидотов при указанных выше отравлениях следует сочетать с подкожными, внутримышечными или внутривенными инъекциями.

В случаях попадания в организм опия, морфина, аконита или фосфора широко применяется окисление твердого вещества. Наиболее распространенным антидотом для этих случаев является перманганат калия, который применяется для промывания желудка в виде 0,02–0,1 %-го раствора. Этот препарат не дает эффекта при отравлении кокаином, атропином и барбитуратами.

Резорбтивное действие. Резорбтивные антидоты химического действия можно подразделить на две основные подгруппы:

a) антидоты, вступающие во взаимодействие с некоторыми промежуточными продуктами, образующимися в результате реакции между ядом и субстратом;

б) антидоты, непосредственно вмешивающиеся в реакцию между ядом и определенными биологическими системами или структурами. В этом случае химический механизм часто бывает связан с биохимическим механизмом антидотного действия.

Антидоты первой подгруппы применяются в случае отравления цианидами. До настоящего времени не существует антидота, который подавлял бы взаимодействие между цианидом и подверженной его влиянию ферментной системой. После всасывания в кровь цианид переносится кровотоком к тканям, где взаимодействует с трехвалентным железом окисленной цитохром-оксидазы одного из ферментов, необходимых для тканевого дыхания. В результате кислород, поступающий в организм, прекращает реагировать с ферментной системой, что вызывает острое кислородное голодание. Однако комплекс, образуемый цианидом с железом цитохромоксидазы, нестабилен и легко диссоциирует.

Следовательно, лечение антидотами протекает в трех основных направлениях:

1) нейтрализация яда в кровотоке немедленно после его поступления в организм;

2) фиксация яда в кровотоке с целью ограничения количества яда, поступающего в ткани;

3) нейтрализация яда, поступающего в кровь, после диссоциации цианометгемоглобина и комплекса цианида и субстрата.

Прямую нейтрализацию цианидов можно обеспечить путем введения глюкозы, реагирующей с синильной кислотой, в результате чего образуется слаботоксичный циангидрид. Более активным антидотом является ß-оксиэтил-метилендиамин. Оба антидота следует вводить внутривенно в течение нескольких минут или секунд после попадания яда в организм.

Более распространенным является метод, при котором ставится задача фиксации яда, циркулирующего в кровотоке. Цианиды не взаимодействуют с гемоглобином, но активно сочетаются с метгемоглобином, образуя цианометгемоглобин. Хотя он не отличается высокой стабильностью, но некоторое время может сохраниться. Поэтому в данном случае необходимо вводить антидоты, способствующие образованию метгемоглобина. Осуществляется это путем вдыхания паров амилнитрита или внутривенного введения раствора нитрита натрия. В результате свободный цианид, присутствующий в плазме крови, связывается в комплекс с метгемоглобином, теряя в значительной степени свою токсичность.

Необходимо иметь в виду, что антидоты, образующие метгемоглобин, могут влиять на артериальное давление: если амилнитрит вызывает выраженное, кратковременное падение давления, то нитрит натрия оказывает продолжительное гипотоническое действие. При введении веществ, образующих метгемоглобин, следует учитывать, что он не только принимает участие в переносе кислорода, но и сам может стать причиной кислородного голодания. Поэтому применение антидотов, образующих метгемоглобин, должно подчиняться определенным правилам.

Третий метод лечения антидотами заключается в нейтрализации цианидов, высвобожденных из комплексов с метгемоглобином и цитохром-оксидазой. С этой целью производится внутривенное взбрызгивание тиосульфата натрия, преобразующего цианиды в нетоксические тиоцианаты.

Специфичность химических антидотов ограничена, поскольку они не влияют на прямое взаимодействие между ядом и субстратом. Однако воздействие, которое такие антидоты оказывают на определенные звенья механизма токсического действия, имеет несомненное терапевтическое значение, хотя применение этих антидотов требует высокой врачебной квалификации и предельной осторожности.

Химические антидоты, непосредственно взаимодействующие с токсичным веществом, отличаются высокой специфичностью, позволяющей им связывать токсические соединения и выводить их из организма.

Комплексообразующие антидоты образуют стабильные соединения с двух- и трехвалентными металлами, которые затем легко выводятся с мочой.

В случаях отравления свинцом, кобальтом, медью, ванадием большой эффект дает двунатриевокальциевая соль этилендиаминтетрауксусной кислоты (ЭДТА). Кальций, содержащийся в молекуле антидота, реагирует только с металлами, образующими более стабильный комплекс. Эта соль не реагирует с ионами бария, стронция и некоторых других металлов с более низкой константой устойчивости. Имеется несколько металлов, с которыми этот антидот образует токсичные комплексы, поэтому его следует применять с большой осторожностью; в случае отравления кадмием, ртутью и селеном применение этого антидота противопоказано.

При острых и хронических отравлениях плутонием и радиоактивными йодом, цезием, цинком, ураном и свинцом применяется пентамил. Данный препарат применяется также в случаях отравления кадмием и железом. Его применение противопоказано лицам, страдающим нефритом и сердечно-сосудистыми заболеваниями. Комплексообразующие соединения в целом включают также антидоты, молекулы которых содержат свободные меркаптогруппы – SH. Большой интерес в этом плане представляют димеркаптопром (БАЛ) и 2,3-димер­каптопропансульфат (унитиол). Молекулярная структура этих антидотов сравнительна проста:

H 2 C – SH H 2 C – SH | |

HC – SH HC – SH

H 2 C – OH H 2 C – SO 3 Na

БАЛ Унитиол

В обоих этих антидотах имеются две SH-группы, близкие друг к другу. Значение данной структуры раскрывается в приводимом ниже примере, где антидоты, содержащие SH-группы, реагируют с металлами и неметаллами. Реакцию димеркаптосоединений с металлами можно описать следующим образом:

Фермент + Me → фермент Ме

HSCH 2 S – CH 2

HSCH + фермент Me → фермент + Me– S – CH

HOCH 2 OH–CH 2

Здесь можно выделить следующие фазы:

а) реакция ферментных SH-групп и образование малоустойчивого комплекса;

б) реакция антидота с комплексом;

в) высвобождение активного фермента благодаря образованию комплекса металл-антидот, выводящегося с мочой. Унитиол менее токсичен, чем БАЛ. Оба препарата применяются при лечении острых и хронических отравлений мышьяком, хромом, висмутом, ртутью и некоторыми другими металлами, но не свинцом. Не рекомендуется при отравлении селеном.

Для лечения отравлений никелем, молибденом и некоторыми другими металлами эффективных антидотов не существует.

2.6.3. Антидоты биохимического действия

Эти препараты отличаются высокоспецифичным антидотным эффектом. Для этого класса типичны антидоты, применяемые при лечении отравлений фосфорорганическими соединениями, являющимися основными компонентами инсектицидов. Даже очень небольшие дозы фосфорорганических соединений подавляют функцию холинэстеразы в результате ее фосфорилирования, что приводит к накоплению ацетилхолина в тканях. Поскольку ацетилхолин имеет огромное значение для передачи импульсов как в центральной, так и в периферической нервной системе, его чрезмерное количество ведет к нарушению нервных функций, и, следовательно, к серьезным патологическим изменениям.

Антидоты, восстанавливающие функцию холинэстеразы, принадлежат к производным гидроксамовых кислот и содержат оксимную группу R – CH = NOH. Практическое значение имеют оксимные антидоты 2–ПАМ (пралидоксим), дипироксим (ТМБ – 4) и изонитрозин. При благоприятных условиях эти вещества могут восстановить функцию фермента холинэстеразы, ослабляя или ликвидируя клинические признаки отравления, предотвращая отдаленные последствия и способствуя успешному выздоровлению.

Практика, однако, показала, что наилучшие результаты достигаются в тех случаях, когда биохимические антидоты применяются в сочетании с антидотами физиологического действия.

  • II. Понятие развития имеет ограниченное применение для науки истории и часто служит причиной помех и препятствий
  • Адаптация и дезадаптация при экстремальных ситуациях. Понятие ресурсов.
  • Атаксия, ее виды. Понятие динамической и статистической атаксии.
  • Виды изменчивости бактерий. Фенотипическая и генотипическая изменчивость. Понятие о популяционной изменчивости.
  • Вопрос 1. Понятие и методы диагностики функциональных состояний
  • Гормонанальная регуляция функций организма. Понятие о диффузной эндокринной системе. Гормонов поджелудочной железы и их функции.
  • РЕФЕРАТ

    на тему:

    __________________________________________________________

    Выполнил: студент 23 группы

    А.А.Фирман

    Проверил:

    г.Новосибирск, 2010 г.

    1. Понятие антидота

    2. Отравляющие вещества замедленного действия

    3. Антидотная терапия при поражении веществами замедленного действия

    Понятие антидота

    Противоя́дие или антидо́т (от др.-греч. ἀντίδοτον, букв. - даваемое против) - лекарственное средство, прекращающее или ослабляющее действие яда на организм.

    Антидоты (противоядия) - вещества, способные уменьшать токсичность яда путем физического или химического воздействия на него или конкуренцией с ним при действии на ферменты и рецепторы.

    Выбор антидота определяется типом и характером действия веществ, вызвавших отравление, эффективность применения зависит от того, насколько точно установлено вещество, вызвавшее отравление, а также от того, как быстро оказана помощь.

    В зависимости от механизма действия выделяют несколько групп антидотов:

    · Сорбенты - антидоты, действие которых основано на физических процессах (активированный уголь, вазелиновое масло, полифепан).

    · Антидоты, обезвреживающие яд путем химического взаимодействия с ним (перманганат калия, гипохлорид натрия), что приводит к образованию менее токсичных веществ.

    Антидоты предназначены для того, чтобы влиять на кинетику попавшего в организм токсичного вещества, на его абсорбцию или элиминацию, снижать действие яда на рецепторы, препятствовать опасному метаболизму, устранять угрожающие расстройства функций органов и систем, вызванные отравлением. В клинической практике антидоты и другие лекарства, используемые при отравлениях, применяются параллельно с общереанимационными и детоксикационными методами лечения. И в тех случаях, когда нельзя провести реанимационные мероприятия, жизнь пострадавшего можно спасти только введением антидота.

    В настоящее время антидоты разработаны лишь для ограниченной группы токсикантов. В соответствии с видом антагонизма к токсиканту они могут быть классифицированы на несколько групп (таблица 1).

    Таблица 1. Противоядия, используемые в клинической практике

    Вид антагонизма Противоядия Токсикант
    1.Химический ЭДТА, унитиол и др. Со-ЭДТА и др. азотисто-кислый Na амилнитрит диэтиламинофенол антитела и Fab- фрагменты тяжелые металлы цианиды, сульфиды -//- -//- гликозиды ФОС паракват токсины
    2.Биохимический кислород реактиваторы ХЭ обратим. ингибит. ХЭ пиридоксин метиленовый синий СО ФОС ФОС гидразин метгемоглобино-образователи
    3.Физиологический атропин и др. аминостигмин и др. сибазон и др. флюмазенил налоксон ФОС, карбаматы холинолитики, ТАД, нейролептики ГАМК-литики бензодиазепины опиаты
    4.Модификация метаболизма тиосульфат Na ацетилцистеин этанол 4-метилпиразол цианиды ацетаминофен метанол, этиленгликоль

    Истинных антидотов, то есть веществ, которые полностью нивелировали бы действие яда в организме, нет.

    Антидоты или противоядия это такие лечеб­ные препараты, которые при введении в организм в условиях инток­сикации способны обезвредить (инактивировать) яд, циркулирую­щий в кровяном русле или даже уже связавшийся с каким-либо био­логическим субстратом, либо устранить токсический эффект яда, а также ускорить его выведение из организма. К антидотам также относят такие средства, которые способны препятствовать проникно­вению яда в организм.

    По механизму лечебного действия существующие антидоты мож­но разделить на следующие основные группы.

    1. Физико-химические - действие основано на физико-химиче­ских процессах (адсорбция, растворение) в пищевом канале. К ним относятся адсорбенты, которые бывают если не универсальными, то поливалентными. Наиболее распространенным противоядием этого типа является активированный уголь, который, обладая большой поверхностью, способен адсорбировать яд, попавший в желудок. Однако активность его ограничивается тем, что он способен взять яд «в плен» только до его резорбции. Следовательно, такие антидо­ты можно применять только перорально.

    2. Химические - действие основано на специфическом химиче­ском взаимодействии с ядом, в результате чего последний инакти-вируется. При этом антидот путем связывания, осаждения, вытес­нения и конкурентных или других реакций превращает яд в без­вредное вещество, выделяемое с мочой или калом из организма.

    3. Физиологические, или функциональные - действие направ­лено на устранение токсического эффекта яда. В отличие от преды­дущих такие антидоты не реагируют непосредственно с ядом и не изменяют его физико-химического состояния, а вступают во взаимо­действие с биологическим субстратом, на который яд отрицательно влияет. Действие физиологических антидотов основано на принципе функционального антагонизма.

    Деление антидотов на указанные группы условно, так как мно­гие из них могут быть препаратами смешанного типа, действие кото­рых более сложно, чем каждой приведенной группы отдельно. Анти­дот может представлять собой также смесь нескольких лечебных средств, вводимых в определенной последовательности или же одно­временно. При этом, оказывая лечебное действие в различных на­правлениях, отдельные ингредиенты дополняют друг друга или же усиливают эффект путем суммирования либо потенцирования анти-дотного действия. Наиболее эффективными антидотами являются те, которые способны дезактивировать яд в точках его приложения.

    Важным обстоятельством, обеспечивающим высокую активность антидота, являются сроки его введения после отравления. Чем рань­ше применено противоядие, тем эффективнее проявляется его поло­жительное действие.

    В настоящее время медицинская практика для борьбы с раз­личными отравлениями располагает пока небольшим числом лечеб­ных средств антидотного действия. Для лечения отравления различ­ными соединениями мышьяка - органическими и неорганическими, 3-, 5-валентными (мышьяковистый ангидрид, арсениты и арсенаты натрия и кальция, парижская зелень, осарсол, новарсенол), а также тяжелыми металлами, в том числе и радиоактивными (ртуть, медь, полоний, кадмий и др.), широко зарекомендовали себя меркапто-соединения, например, отечественный препарат унитиол (А. И. Черкес, В. Е. Петрунькин и соавт., 1950).

    По строению он представляет собой дитиол, то есть соединение, содержащее две сульфгидрильные группы, и относится к антидотам химического типа действия.

    Унитиол обладает большой широтой терапевтического действия; его можно вводить парентерально, через рот. Препарат стоек при хранении как в кристаллическом состоянии, так и в виде растворов. Создание данного антидота оказалось возможным благодаря раскрытию механизма токсического действия мышьяксодержащих соединений. Токсическое действие последних обусловлено блокирую­щим влиянием на меркаптогруппы тиобелков ферментных систем, играющих жизненно важную роль. При этом сульфгидрильные груп­пы ферментов, легко взаимодействуя с тиоловыми ядами, образуют прочный токсичный комплекс (белок - яд), в результате чего тио-белки теряют свою реактивную способность.

    Унитиол , попадая в организм, отравленный мышьяк- и металлсо­держащими веществами, благодаря высокой реакционной способно­сти сульфгидрильных групп, легко вступает в реакцию с мышьяком или металлом, предотвращая этим связывание ядов с меркаптогруппами ферментных белков. При этом дитиолы с мышьяком или метал­лом образуют малотоксичные, водорастворимые комплексные соеди­нения - циклические тиоарсениты или меркаптиды металлов, которые затем выводятся с мочой из организма. Тиоарсениты по прочности превосходят те, которые образуются при взаимодействии ядов. с 5Н-группами ферментов, а по токсичности уступают последним. Поэтому при лечении унитиолом в моче пострадавших обнаружи­вается больше мышьяка или металла, чем у нелеченных. Указанные антидоты используются в качестве активных средств элиминации ядов, что является важным как при остром, так и хроническом отравлении.

    Необходимо отметить, что унитиол реагирует не только со сво­бодными мышьяк- и металлсодержащими соединениями, но и с ядом, который уже успел вступить в реакцию с тиоферментами. Поэтому антидот способен не только защитить ферменты от блоки­рующего влияния ядов, но и реактивировать меркаптогруппы фер­ментных систем, уже угнетенных ядом. Тиоловые препараты обла­дают как профилактическим, так и выраженным терапевтическим эффектом.

    Препарат обладает однотипным действием с унитиолом и реко­мендуется при отравлении тиоловыми ядами, в частности, свинцом и ртутью. Сукцимер более равномерно выводит их из организма и меньше чем унитиол влияет на выведение микроэлементов из орга­низма (О. Г. Архипова и соавт., 1975).

    Оксатиол (Л. А. Ильин, 1976), являющийся аналогом унитиола, оказался более эффективным элиминатором радиоактивного полония. Оксатиол уменьшает степень внутреннего облучения организма этим излучателем.

    Из монотиояов известен пеницилламин , который обладает комплексообразующими свойствами и поэтому рекомендуется при отрав­лении ртутью, свинцом (при сатурнизме) и их солями (С. И. Ашбель с соавт., 1974).

    Комплексообразующие свойства пеницилламина зависят не толь­ко от наличия активной сульфгидрильной группы, но и связаны со стереохимическим строением его молекулы, а также наличием атома азота и карбоксильной группы, обеспечивающих возможность обра­зования координационных связей. Благодаря этому пеницилламин образует стабильные комплексы со свинцом, чего нельзя сказать об унитиоле.

    Последний, будучи мощным антидотом целого ряда тиоловых ядов, оказался неэффективным по отношению к мышьяковистому водороду. Это обусловлено тем, что механизм токсического действия этого арсина отличается бт других мышьяксодержащих веществ.

    Совместные усилия химиков и токсикологов завершились созда­нием антидота мекаптида , который оказался эффективным при отравлении мышьяковистым водородом.

    Липоидотропные свойства, а также высокая капиллярная актив­ность способствуют проникновению антидота в эритроциты. Обладая легкой окисляемостью препарат образует соединения, содержащие дисульфидные группы, которые окисляют мышьяковистый водород и его метаболиты - гидраты мышьяка. Восстановленный затем дитиол и продукты окисления мышьяковистого водорода образуют ма­лотоксичные циклические тиоарсениты, которые выводятся из орга­низма с мочой.

    Унитиол, являясь водорастворимым дитиолом и обладая восста­новительными свойствами, не может окислять мышьяковистый водород. Поэтому, примененный в ранние сроки интоксикации по­следним, он даже ухудшает течение и исход отравления. В более поздние сроки (через 5-7 дней после отравления), когда процесс окисления арсина в основном закончился и образовались мышьяксодержащие вещества, унитиол можно рекомендовать в качестве элиминатора, ускоряющего выведение мышьяка из организма.

    При отравлении многими металлами наряду с тиоловыми пре­паратами (унитиолом, сукцимером) эффективными антидотолечебными свойствами обладают комплексоны (хелатообразователи ) - группа соединений, способных образовывать стойкие, малодиссоции­рующие комплексы со многими тяжелыми металлами, которые отно­сительно быстро выводятся из организма. Из них наиболее распро­странены тетацин-кальций (кальций-динатриевая соль этилендиамин-тетрауксусной кислоты, ЭДТА), пентацин и др.

    Тетацин-кальций вводят внутривенно капельно по 20 мл 10% раствора (в изотоническом растворе натрия хлорида или в 5% ра­створе глюкозы), а также внутрь в таблетках по 0,5 г. Разовая доза 2 г, суточная - 4г.

    Комплексоны чаще используются в медицинской практике в качестве элиминаторов из организма многих токсических металлов, щелочно- и редкоземельных элементов, а также радиоактивных изо­топов.

    При отравлении препаратами железа (сульфат, глюконат и лактат железа) наиболее эффективен дефероксамин (десферол) - производное гидроксамовой кислоты. Этот комплексообразователь спо­собен выводить железо с мочой из организма, не влияя при этом на содержание других металлов и микроэлементов. Следовательно, тиоловые антидоты являются не единственными активными детоксицирующими средствами по отношению к мышьяксодержащим соедине­ниям и некоторым тяжелым металлам.

    Принимая во внимание, что обезвреживание многих производ­ных галоидуглеводородов в организме происходит главным образом путем их конъюгации с меркаптогруппами биосубстратов (глутатион, цистеин), в качестве возможных противоядий были изучены та­кие монотиолы, как цистеин и ацетилцистеин.

    Цистеин является эффективным специфическим средством лече­ния при интоксикации моногалоидуглеводородами алифатического ряда; бромистым метилом, металлилхлоридом, хлористым этилом, йодистым метилом, эпихлоргидрином и другими препаратами (И. Г. Мизюкова, Г. Н. Бахишев, 1975).

    Важно отметить, что цистеин оказывает положительное дей­ствие при приеме внутрь. Это дает возможность использовать его в качестве профилактического средства, что имеет важное практиче­ское значение при проведении фумигационных работ с такими токсическими веществами, как бромистый метил, метилаллилхлорид и др.

    Механизм лечебного действия цистеина при отравлении монога-лоидалкилами рассматривается в основном как результат конку­рентного действия сульфгидрильных групп препарата и белков, а также аминокислот организма по отношению к галоидалкилу как высокореакционному алкилирующему агенту. В результате этого образуются малотоксические соединения в виде предшественников меркаптуровых кислот (5-метилцистеин и 5-метилглутатион), кото­рые с мочой выводятся из организма.

    Цистеин обладает антидотным действием при отравлении мно­гими моногалоидуглеводородами алифатического ряда. С увеличени­ем количества атомов галоида в молекуле вещества (например, ди­хлорэтан, дибромэтан, четыреххлористый углерод) действие цистеи­на уменьшается или исчезает.

    Ацетилцистеин - высокоэффективное лечебное средство не толь­ко при отравлениях моногалоидпроизводными углеводородов али­фатического ряда, но и дигалоидпроизводными. Так, впервые пока­зана детоксицирующая способность ацетилцистеина при отравлениях дихлор- и дибромэтаном (И. Г. Мизюкова, М. Г. Кокаровцева, 1978). При этом обезвреживанию подвергаются в основном токсич­ные метаболиты дихлорэтана (хлорэтанол, монохлоруксусный аль­дегид, монохлоруксусная кислота), которые образуются в орга­низме.

    Лечебное действие ацетилцистеина осуществляется двумя путя­ми: химической конъюгацией токсического вещества или его метабо­литов с цистеином (образующимся в организме из ацетилцистеина), а также увеличением объема ферментативной конъюгации с восста­новленным глутатионом печени.

    Ацетилцистеин устойчивее цистеина, находящегося как в кри­сталлическом состоянии, так и в виде растворов.

    Примером комплексной антидотной терапии могут служить спе­цифические средства, применяемые при отравлении синильной кисло­той и цианистыми соединениями.

    Антидотная терапия отравлений цианистыми соединениями за­ключается в последовательном применении метгемоглобинобразователей и серусодержащих соединений, а также углеводов.

    Метгемоглобинобразующие препараты (амилнитрит, пропилнит-рит, нитрит натрия и др.) превращают гемоглобины в метгемогло-бин путем окисления двухвалентного железа в трехвалентное. Циан-ион, в свою очередь, быстро и прочно реагирует с трехвалент­ным железом метгемоглобина и образует цианметгемоглобин, пре­пятствуя взаимодействию яда с цнтохромоксидазой, то есть предот­вращает блокаду фермента.

    Образующийся цианметгемоглобин - соединение непрочное, и отщепление циан-группы может вновь оказывать токсическое влия­ние. Но этот процесс протекает уже медленно. Поэтому наряду с метгемоглобинобразователями нужно применять такие средства, ко­торые способны реагировать с цианионом. К ним относятся серусодержащие вещества (тиосульфат натрия) и углеводы (хромосмон или глюкоза).

    В качестве противоядий используют антиоксиданты, особенно в тех случаях, когда при воздействии того или иного химического агента в условиях организма в результате окисления яда образуют­ся более токсичные продукты, чем исходное вещество. Стабилизи­рующее действие антиоксидантов заключается в том, что они всту­пают в конкурентные отношения с окислителем либо вместе с по­следним за ферменты, участвующие в процессах окисления.

    В первом варианте антиоксидант препятствует окислению яда и тем самым понижает количество циркулирующих в организме токси­ческих продуктов его превращения.

    Например, этиловый спирт препятствует окислению метанола и, следовательно, тормозит образование формальдегида и муравьиной кислоты, которые обусловливают токсическое действие метилового спирта.

    Во втором варианте антиоксиданты, разрывая окислительную цепь, могут подавлять образование свободных радикалов или на­правлять превращение перекисей в сторону образования стабильных продуктов.

    В качестве антиоксидантов могут быть использованы некоторые витамины и аминокислоты. Так, в эксперименте на животных полу­чены положительные результаты при применении токоферола ацета­та в условиях интоксикации такими хлорорганическимн пестицида­ми, как гептахлор и гамма-изомер гексахлорана, а также цистина, цистамина и метионина при отравлении бензолом.

    Наряду с противоядиями, направленными на нейтрализацию или связывание яда, широкое использование в медицинской практи­ке находят лечебные препараты, назначение которых состоит в пред­упреждении или устранении вредных проявлений действия ядов,- это физиологические или функциональные антидоты.

    Впервые в качестве физиологического антидота был применен атропина сульфат при отравлении мухоморами . Было установлено, что препарат устраняет эффекты различных холиномиметических (ацетилхолин, карбахолин, пилокарпина гидрохлорид, ареколин, мускарин и др.) и антихолинэстеразных веществ (физостигмина салицилат, прозерин, галантамина гидробромид, фосфорорганические соединения). Таким же действием, но в меньшей степени, чем атро­пина сульфат, обладают и другие холинолитические препараты (скополамина гидробромид, платифиллина гидротартрат, апрофен, дипрофен, тропацин и др.).

    Исследование механизма антагонизма между холиномиметическими и холинолитическими веществами показало, что последние обладают большей тропностью к холинорецепторам по сравнению с холиномиметическимн веществами. Так, атропина сульфат может снять эффект даже нескольких смертельных доз холиномиметиче­ских и антихолинэстеразных веществ, в то время как последние не устраняют всех симптомов отравления атропина сульфатом.

    Известно, что органические соединения фосфора, которые ис­пользуются во многих отраслях народного хозяйства, в том числе и сельского, в качестве пестицидов (тиофос, метафос, хлорофос, метилмеркаптофос, карбофос, метилнитрофос и др.), являются сильны­ми ингибиторами холинэстеразы.

    Благодаря фосфорилированию наступает инактивация холин­эстеразы и потеря способности гидролизовать ацетилхолин. В ре­зультате этого происходит избыточное накопление ацетилхолина в местах его образования, что и обусловливает токсическое действие фосфорорганических соединений (ФОС), которое проявляется в воз­буждении нервной системы, спастическом состоянии гладкой муску­латуры, судорогами поперечнополосатой мускулатуры.

    В механизме токсического действия ФОС угнетение холинэстера­зы играет важную, а иногда и определяющую роль, но этот процесс не _ является единственным. Наряду с ним происходит прямое воз­действие яда на ряд важнейших систем и органов.

    Использование холинолитических средств явилось основой для антидотной терапии отравлений фосфорорганическими веществами. Из них наиболее широкое применение получил атропина сульфат, который блокирует М-холинореактивные системы организма, и они становятся нечувствительными к ацетилхолину. Являясь антагони­стом ацетилхолина, препарат вступает в конкурентные отношения с ним за обладание одним и тем же рецептором и снимает мускари-ноподобный эффект ФОС (в частности бронхоспазм, уменьшает се­крецию желез и слюноотделение).

    Атропина сульфат более эффективен при введении с целью про­филактики. Для лечения его нужно применять в больших дозах а повторно, потому что действие препарата исчезает быстрее, чем эф­фект ФОС. В условиях интоксикации ФОС толерантность катропина сульфату резко возрастает, поэтому его можно вводить в больших количествах (20 мг и более в сутки).

    Отравление ФОС сопровождается также рядом никотиноподобных явлений. В связи с тем что атропина сульфат обладает более выраженными свойствами устранять мускариноподобный эффект, в дальнейшем были предложены другие холинолитические препараты (тропацин, апрофен, спазмолитик), способные уменьшать никотино-подобыые эффекты. Для усиления антидотного действия атропина сульфата как периферического холинолитика рекомендуется исполь­зовать центральные холинолитики (амизил и др.). Такое сочетание холинолитиков нашло практическое применение при лечении отрав­лений фосфорорганическими инсектицидами.

    При взаимодействии ФОС с холинэстеразами фосфорилируется сериновый гидроксил эстеразного центра фермента по тому же меха­низму, по которому происходит его ацетилирование при взаимодей­ствии с ацетилхолином. Отличие состоит в том, что дефосфорилирование проходит значительно медленнее, чем деацетилирование. Это навело на мысль о возможности ускорения дефосфорилирования ингибированной холинэстеразы с помощью нуклеофильных агентов.

    Процесс реактивации холинэстеразы, ингибированный фосфор-органическими соединениями, наступает под влиянием производных гидроксамовых кислот. Эти данные дали возможность в качестве специфических средств лечения отравлений ФОС применять реактиваторы, способные восстанавливать активность холинэстеразы, угне­тенной ядом.

    Реактиваторы вытесняют ФОС из соединений с холинэстеразой и тем самым восстанавливают ее активность. В результате такого влияния активируется холинэстераза, возобновляется ферментатив­ный гидролиз ацетилхолина и, следовательно, нормализуется процесс химической передачи нервных импульсов.

    В настоящее время получены более активные реактиваторы, чем гидроксамовые кислоты,- ТМБ-4, получивший в Советском Союзе название дипироксим (изонитрозин), а также соли 2-ПАМ (прали-доксим), МИНА (моноизонитрозоацетон) и токсогонин (обидоксим). Препараты способны не только реактивировать угнетенную холин-эстеразу, но и непосредственно реагировать с ФОС, образуя при этом нетоксичные продукты гидролиза. К сожалению, широкому приме­нению реактиваторов холинэстеразы в медицинской практике в зна­чительной мере препятствует высокая их токсичность.

    Дальнейшие исследования позволили получить менее токсичные и более эффективные реактиваторы - диэтиксим, который по своей структуре близок к ацетилцистеину (В. Е. Кривенчук, В. Е. Петрунь-кин, 1973; Ю. С. Каган и соавт., 1975; Н. В. Кокшарева, ^1975), а также диалкоб - комплексное соединение кобальта (В. Н. Евреев и соавт., 1968).

    Следовательно, антидотная терапия отравлений ФОС осущест­вляется в двух направлениях - использование холинолитиков и при­менение реактиваторов холинэстеразы. Наиболее эффективно холиколитики сочетать с реактиваторами.

    Другим примером физиологического антагонизма , используемого с терапевтической целью, могут служить также конкурентные вза­имоотношения между окисью углерода и кислородом. Окись углеро­да обладает значительно большим сродством к гемоглобину по сравне­нию с кислородом. Поэтому при наличии в воздухе более низких концентраций окиси углерода по сравнению с кислородом в крови происходит постепенное накопление карбоксигемоглобина и содер­жание оксигемоглобина уменьшается.

    Для успешного применения кислорода в условиях отравления окисью углерода необходимо, чтобы его концентрация в воздухе в тысячи раз превышала концентрацию ядовитого газа. Кислород при высоких концентрациях может вытеснять СО из образовавшегося карбоксигемоглобина НЬсо. Применение кислорода при интоксика­ции окисью углерода рассматривается как специфическая терапия.

    По принципу функционального антагонизма действуют бемегрид, налорфина гидрохлорид и протамина сульфат.

    Бемегрид является антагонистом барбитуратов, поэтому исполь­зуется при лечении острых отравлений этими веществами и снотвор­ными средствами. Налорфина гидрохлорид применяется как антидот в условиях острого отравления анальгетическими препаратами (мор­фина гидрохлоридом, промедолом, и др.).

    Протамина сульфат - антагонист гепарина, применяется как антидот при отравлениях указанным антикоагулянтом.

    Лечение различных отравлений химическими веществами не мо­жет ограничиваться применением только специфических антидотов, хотя во многих случаях они играют решающую роль.

    Только комплексная терапия с использованием методов усиле­ния естественной и искусственной детоксикации организма, суще­ствующих антидотов, а также патогенетических и симптоматических средств, направленных на защиту тех органов и функций организма, которые избирательно поражаются токсическим веществом, будет способствовать быстрейшему выздоровлению пострадавшего.

    Лечение острых отравлений, 1982 г.