Кость как орган (строение кости). Строение кости как органа Кость как орган губчатое в во

Кость (os) человека представляет собой сложный орган: она занимает соответствующее место, имеет соответствующие форму и строение, выполняет только ей присущие функции.

Проникающие в кость сосуды и нервы способствуют взаимодействию ее с организмом, участию в общем обмене веществ, выполнению функций и необходимой перестройке при росте, развитии и изменяющимся условиям существования. В живом организме кость содержит около 50 % воды, 28 % органических веществ, в том числе 16 % жиров и 22 % неорганических веществ.

Кость образуется костной тканью, которая относится к соединительной ткани. Она состоит из клеток и плотного межклеточного вещества, богатого коллагеном и минеральными компонентами.

В костной ткани встречаются два типа клеток - остеобласты и остеокласты. Остеобласты - это молодые костные клетки, многоугольной формы, богатые элементами зернистой цитоплазматической сети, рибосомами и хорошо развитым комплексом Гольджи. Остеобласты постепенно дифференцируются в остеоциты, при этом в них уменьшается количество органелл.

Остеоциты - зрелые многоотростчатые клетки, которые залегают в костных лакунах. Количество клеточных органелл в остеоцитах снижено, и они нередко запасают гликоген. Система костных канальцев обеспечивает обмен веществ между остеоцитами и тканевой жидкостью. костной ткани находятся также остеокласты - крупные многоядерные клетки, бедные хроматином.

Снаружи кость покрыта слоем плотной соединительной ткани - надкостницей Это тонкая плотная соединительная пластинка, богатая кровеносными и лимфатическими сосудами и нервами. Надкостница имеет наружный и внутренний слои.

Наружный слой надкостницы волокнистый, внутренний - ростковый (костеобразующий). Внутренний слой присоединяется непосредственно к костной ткани и формирует молодые клетки (остеобласты), которые располагаются на поверхности кости. Таким образом, в результате костеобразующих свойств надкостницы кость растет в толщину. С костью надкостница плотно срастается при помощи проникающих волокон, которые глубоко входят внутрь кости.

Наружный слой кости представлен пластинкой компактного вещества, которая в диафизах трубчатых костей более толстая, чем в эпифизах. В компактном веществе костные пластинки располагаются в определенном порядке, образуют сложные системы - остеоны - структурные единицы кости. Остеон состоит из 5-20 цилиндрических пластинок, вставленных одна в другую.

В центре каждого остеона проходит центральный (гаверсов) канал. Через него в свою очередь проходят по одной артерия и вена, которые разветвляются на капилляры и по каналам подходят к лакунам гаверсовой системы. Они обеспечивают поступление и отток из клеток питательных веществ и продуктов метаболизма, СО2 и О2. Каждый гаверсов канал содержит также лимфатический сосуд и нервные волокна. На наружной и внутренней поверхностях кости костные пластинки не образуют концентрические цилиндры, а располагаются вокруг них. Эти области пронизаны каналами Фолькманна, через которые проходят кровеносные сосуды, соединяющиеся с сосудами гаверсовых каналов. Основное вещество компактной кости состоит из костного коллагена, вырабатываемого остеобластами, и гидроксиапатита; кроме того, в него входят магний, натрий, карбонаты и нитраты.

Под компактным веществом располагается губчатое, которое представляет собой сеть из тонких анастомозиро-ванных костных элементов -трабекул. Трабекулы ориентированы в тех направлениях, в которых кости повышают свою устойчивость к нагрузкам и сжатию при минимальной массе. Губчатая кость находится и в эпифизах трубчатых длинных костей и коротких (позвонки, кости запястья и предплюсны). Она свойственна также зародышам и растущим организмам.

Внутри кости, в костномозговой полости и ячейках губчатого вещества, находится костный мозг. Во внутриутробном периоде и у новорожденных все кости содержат красный костный мозг, который выполняет преимущественно кроветворную функцию. У взрослого человека красный костный мозг содержится только в ячейках губчатого вещества плоских костей (грудина, кости черепа, подвздошные кости), в губчатых (коротких костях), эпифизах трубчатых костей. В костномозговой полости диафизов трубчатых костей находится желтый костный мозг. Он состоит из жировых включений и перерожденной ретикулярной стромы.

Большинство костей содержит внутри красный костный мозг, который является органом кроветворения, а также органом иммунной системы организма. Кости при этом защищают красный костный мозг от повреждения, создают благоприятные условия для его трофики и созревания форменных элементов крови. Кости принимают участие в минеральном обмене. В них депонируются многочисленные химические элементы, преимущественно соли кальция, фосфора. Так, при введении в организм радиоактивного кальция уже через сутки более половины этого вещества накапливается в костях.

Как видно из названия, наука биохимия стоит на стыке двух важных дисциплин. Одна из них – химия, другая же - биология. И изучает биохимия, соответственно, химический состав живых клеток и организмов. Кроме того, биологическая химия (или химическая биология) исследует различные химические процессы, которые лежат в основе жизнедеятельности абсолютно любого живого существа. Но, в данном случае, наиболее интересным будет строение кости лошади с точки зрения биохимии.

Как и любого позвоночного животного, кости выполняют опорную основу для тела. В комплексе - это костяк или , который участвует в движениях тела животного, а также защищает внутренние органы. С одной стороны, скелет лошадей очень схож со скелетом тех же больших кошек или, например, волков (все эти виды животных, как известно, передвигаются на четырёх конечностях). Но, с другой стороны, лошади кардинально от них отличаются. И не только в физическом плане. Кости скелета лошади ещё и имеют довольно сложный химический состав.

Кости скелета

Абсолютно все кости у лошади состоят из различных соединений. Эти соединения, в свою очередь, подразделяются на органические и неорганические. К первым можно смело отнести белок (по-научному - оссеин), а так же липиды (это - жёлтый костный мозг). Ко вторым, чаще всего, относят воду и различные минеральные соли. Среди них: кальций, калий, натрий, магний, фосфор и другие химические элементы. А если, например, извлечь из организма взрослой особи кость, то можно увидеть, что на половину она состоит из воды, на 22% - из минералов, на 12% - из белка и на 16% из липидов.

По своим свойствам кости у лошадей обладают довольно высокой твёрдостью и прочностью. Во многом это зависит от высокого содержания минералов и других необходимых элементов. Ещё два немаловажных свойства – эластичность и упругость. Оба они напрямую зависят от белка. А вообще, такое сочетание твёрдости и эластичности во многом достигается за счёт специфического сочетания органики и неорганики. И если сравнивать кости лошади с каким-либо материалом, то по упругости и прочности это всё равно, что бронза или медь.

Но не всегда кости у лошадей будут такими твёрдыми и эластичными. Соотношение многих компонентов в составе кости зависит, прежде всего, от возраста лошади, а уже потом от питания и времени года. Например, у молодого животного отношение белка к минералам 1:1. У взрослого животного – 1:2. А у старого 1:7.


Расположение костных отделов

Каждая кость каждой лошади состоит из костной ткани. Сама ткань постоянно и довольно быстро видоизменяется. Кроме всего этого, костная ткань, наверное, единственная во всём организме способна к полной регенерации. Что интересно, в ней могут происходить сразу два противоположных друг другу диаметрально процесса – это процесс восстановления и процесс разрушения. На все эти процессы оказывают сильное влияние различные механические силы, которые имеют место быть в период статики и/или динамики животного.

Сама по себе костная ткань лошади состоит из различных клеток и межклеточного вещества.

Костных клеток выделяют всего несколько видов:

  1. Остеобласты.
  2. Остеоциты.
  3. Остеокласты.

Остеобласты представляют собой самые молодые клетки. Они синтезируют межклеточное вещество.


Остеобласты

Когда оно накапливается, то остеобласты в нём замуровываются и становятся, в последствии остеоцитами. Ещё одна их важная функция – непосредственное участие в процессах отложения кальция всё в том же межклеточном матриксе. Этот процесс называется кальцификацией.

В переводе с греческого языка, слово «остеоциты» обозначает «вместилище клетки».


Остеоциты

Эти клетки встречаются у зрелой особи. Как говорилось выше, образуются они из остеобластов. Тела их расположены в полостях основного вещества, а отростки – в канальцах, отходящих от полостей. По мнению многих учёных, они принимают активное участие в образовании белка и растворяютмежклеточное неминерализированное вещество. Именно им дано обеспечивать объединение кости, а также её структурную интеграцию.

Остеокласты же – это огромные клетки со множеством ядер (15-20 близкорасположенных).

Их диаметр приблизительно 40 мкм. Они способны появляться в тех местах, где костнная структура рассасывается. Эти клетки костную ткань удаляют посредством разрушения коллагена, а также растворения минералов. Таким образом, их основная их функция – это удаление продуктов распада в кости, и, конечно же, растворение минеральных структур.


Остеокласты

И последняя вещь, входящая в состав костной ткани – это межклеточное вещество. Его так же называют костным матриксом. Представлен он, в основном, коллагеновыми волокнами, а также одним аморфным компонентом.

Благодаря коллагену минералы в кости откладываются в виде системы из двух фаз:

  • Кристаллический гидроксиапатит.
  • Аморфный фосфат кальция.

Первая фаза способствует появлению энергии, необходимой для преобразования костей. Далее кость становится полярной. Вогнутые части имеют отрицательный заряд, выпуклые – положительный.

Как известно, костная ткань по своей химической структуре довольно сложна. В её составе есть и белки (оссеин), и различные минералы, и, конечно же, вода (её, как раз больше всего – 50%). Да и клеточный состав здесь довольно сложный: остеобласты, остеоциты, остеокласты и межклеточное вещество. Понятное дело, что для человека, в химии ничего не понимающего, всё это может оказаться довольно сложным.

Но помимо этого всего, можно выделить ещё два основных вида такой ткани. Это: пластинчатая и грубоволокнистая. Уже по названиям можно представить себе, что первый тип похож скорее на грубое волокно, а второй напоминает пластинки.

Грубоволокнистый тип

Грубоволокнистому типу костной ткани лошади больше соответствует хаотическое расположение коллагена в межклеточном матриксе.

Именно из такого типа костной ткани и построен основной скелет плода, а также скелет новорождённого животного. У взрослых особей грубоволокнистый тип ткани встречается только в тех зонах, где сухожилия скреплены с костями. Также его можно заметить в швах черепа, сразу после их непосредственного зарастания.

А вот пластинчатый тип – это уже совсем, так сказать, другая история.

Здесь главная особенность в том, что волокна белка и коллагена расположены в очень строгом порядке и формируют особые пластины цилиндрической формы. Они вставлены одна в другую и «опоясывают» сосуды. Вместе с сосудами, эти пластины опоясывают и нервы, которые расположены в гаверсовом канале.

Пластинчатый тип

В общем, все эти образования получили одно-единственное название: «остеон». То есть, структурная единица пластинчатой ткани – это именно остеон (osteonum). Каждый остеон, в свою очередь, состоит из нескольких цилиндрических пластин (обычно, от 5 до 20).

Каждая такая пластина имеет диаметр в 3-4 мм. Сами по себе остеоны располагаются в полном порядке. И от этого порядка напрямую зависит функциональная нагрузка на всю кость. Из остеонов затем формируются различные перекладины вещества кости. Их ещё называют балками. Эти же балки образуют некое компактное вещество, если, конечно лежат «плотно». В противном случае, если перекладины лежат «рыхло», то балки образуют вещество губчатое.

Если первый тип костной ткани свойственен скорее организму молодому, то на втором типе построен скелет уже организма взрослого (зрелого). Впрочем, элементы первого типа иногда присутствуют у взрослых особей. А элементы второго, в зачаточном состоянии, у более молодых.

В организме любого позвоночного животного, включая человека, находится большое количество разнообразных тканей. И все эти ткани изучает такая наука как гистология. Понятно дело, что и сама гистология подразделяется на ещё более узкоспециальные дисциплины. Название же гистологии так с греческого и переводится – «знание о тканях». Человека, занимающегося этой точной наукой, называют гистологом.

В наше время основными предметами изучения гистологии являются следующие виды тканей:

  • Костная.
  • Хрящевая.
  • Соединительная.
  • Миелоидная.
  • Жидкие ткани внутренней среды.
  • Эндотелий.
  • Нервная ткань.

Из костной ткани образованы кости скелета. Она наиболее твёрдая, прочная, эластичная и упругая.


Костная ткань

Из хрящевой ткани образованы хрящи. Она состоит из хондробластов, хондроцитов, хондрокластов и межклеточного вещества.


Хрящевая ткань

Также, выделяют три типа хрящевой ткани у лошадей: гиалиновая (суставы, рёбра), волокнистая (межпозвоночные диски) и эластическая (уши).

Соединительная ткань также состоит из трёх основных типов клеток (фибропласты, фиброциты и фиброкласты) и межклеточного вещества.

Помимо всего прочего в её состав входят волокна и аморфные вещества (нейтральные и кислые гликозамингликаны). Видов соединительной ткани у коней также два. Это: рыхлая (сопровождает сосуды и нервы) и плотная (формирует фиброзный слой надкостницы). Из названия становится предельно ясна её основная функция.


Соединительная ткань

Миелоидная ткань отвечает за красный костный мозг и развитие клеток, влияющих на лошади.


Миелоидная ткань

К жидким тканям внутренней среды относят кровь и , которые участвуют в транспортировке кислорода, углекислого газа, питательных веществ и всех конечных продуктов обмена. Они выполняют сразу три важные функции: транспортную, трофическую (регуляция состава межклеточной жидкости) и защитную. С жидкими тканями, кстати, связан интересный факт – около 50% всей венозной крови содержится в костях.

Эндотелий – это особенный вид эпителиальных тканей, образующий внутреннюю стенку сосудов.


Эндотелий

Ещё одна важная вещь, которая важна для гистолога – это нервная ткань. Она состоит из нервов и нервных окончаний.

И если какой-либо вид ткани повреждён или находится в плохом состоянии, то очень велико шанс, что животное может тяжело заболеть и погибнуть. И чтобы этого не произошло, нужен правильный уход, правильное питание, и, конечно же, забота.

Вообще, такая наука как анатомия «не предназначена», так сказать, для изучения костей. Анатомия направлена, скорее, на изучение организма в целом, а также на изучение внутренней формы и структуры органов. Но, так как в организме любого живого существа всё взаимосвязано, то и скелет можно изучать в анатомическом ключе. Этим и занимается анатом. И с точки зрения этого самого анатома, кость (в переводе с латыни, кстати, обозначает «ось»), - орган вполне себе самостоятельный.

И он имеет определённые размеры, строение и форму. Таким образом, в кости взрослой особи можно выделить несколько определённых слоёв:

  1. Надкостница.
  2. Компактное и губчатое вещества.
  3. Костномозговая полость с эндоостом.
  4. Костный мозг.
  5. Суставной хрящ.

А вот кость, которая растёт, кроме пяти вышеописанных компонентов имеет ещё и некоторые другие, необходимые для формирования ростовых зон. Здесь можно выделить сразу тройку подвидов костной ткани и, конечно же, метафизарный хрящ.

Надкостница же расположена внутри кости на самой её поверхности. Состоит она, обычно, из двух слоёв: слоя внутреннего и слоя наружного.

Надкостница

Первый - это соединительная плотная ткань. И выполняет она, как водится, функции защиты. Второй – это ткань наиболее рыхлая, и за счёт неё и происходят регенерация вместе с ростом. Сама же надкостница отвечает сразу за три очень важных функции: остеобразующую, трофическую и защитную.

Компактное (или плотное, как его ещё называют) вещество расположено уже за самой надкостницей. Состоит оно из ткани пластинчатой. Отличительной особенностью данного вещества являются прочность и плотность.

Сразу под ним можно рассмотреть другое вещество - губчатое. Построено оно абсолютно из такой же ткани, из какой построено вещество компактное. Вот только отличают его костные перекладины, по свойствам своим довольно рыхлые. Они же, в свою очередь, образуют специальные ячейки.

Внутри самой кости можно обнаружить полость. Её именуют костномозговой. Стенки этой полости (впрочем, как и стенки костных балок) покрыты очень тоненькой оболочкой, состоящей из волокон. А вот стенки этой оболочки - выложены соединительной тканью. Называется данная оболочка эндоостом. В его состав входят остеобласты.

А сам красный костный мозг можно обнаружить внутри ячеек губчатого вещества или даже в костномозговой полости.


Красный костный мозг

В костном мозге проходят процессы образования крови. В ходе , а также у новорожденных особей, все кости участвуют в процессе кровообразования. С возрастом это начинает постепенно проходить, и красный мозг превращается в жёлтый.

И, наконец, суставной хрящ.


Суставной хрящ

Он построен из гиалиновой ткани. Она покрывает поверхности суставов в кости. Толщина хряща сильно различается. Более тонкий он в проксимальном отделе. Надхрящины как таковой не имеет, и почти не подвержен окостенению. Приличная нагрузка может способствовать его истончению.

Скелет взрослой лошади (да и любого другого высшего позвоночного животного) состоит из нескольких определённых типов костей. Исходя из этого, можно выделить несколько основных классификаций. Первая из них – это строение кости. Об этом было сказано в предыдущих статьях. Вторая – форма кости. К примеру, рёберные кости и кости голени сильно разнятся. Третья классификация костей у лошади – по развитию (кости молодого и старого животного различны) И, наконец, четвёртая – по функциям.

Длинные кости лошади подразделяют на дугообразные (к ним относятся рёбра) и трубчатые. Последние выполняют роль своеобразных рычагов передвижения. Состоят из длинной части тела (её ещё называют диафиз) и утолщённых концов (их именуют эпифизом). Между ними заключён метафиз, который обеспечивает рост кости.

Более короткие кости состоят, в основном из губчатого вещества. Снаружи они бывают покрыты тончайшим слоем вещества компактного или суставным хрящом. Расположены в местах большей подвижности и большей нагрузки. Они как бы являются своеобразными рессорами.

Плоские же кости образуют стенки полостей и пояс конечностей (плечевой или тазовый). Их можно представить в виде довольно широкой поверхности, которая предназначена для крепления мышц. На костях плоских можно чётко просмотреть края и углы. Состоят, обычно, из трёх слоёв компакты. Между ними – немного губчатого вещества. При этом, они активно выполняют функцию защиты. Примерами таких костей могут послужить: кости крыши черепа , грудины, лопатки, а также тазовые кости.

Из названия предельно ясно, что «os pneumaticum» или кости воздухоносные связаны с «ношением воздуха». Внутри своего так называемого тела, эти кости имеют определённых размеров полость. К этим полостям можно смело отнести пазуху и синус. Изнутри, и то, и другое, выстлано слизистыми.

К ним можно отнести оболочки:

  • Верхнечелюстную.
  • Клиновидную.
  • Лобную.

Все они в той или иной мере заполнены воздухом. Помимо этого, они могут хорошо сообщаться и с полостью носа.

Последний из подвидов – это кости типа смешанного, имеющие довольно усложнённую форму. Чаще всего данный вид сочетает в себе сразу несколько черт нескольких определённых вариантов. Состоят они из тех частей, которые имеют совершенно разное строение и очертание. Разными они могут быть и по происхождению. К ним можно отнести, например, кости или позвонки, находящиеся у самого основания черепа. Кстати, через некоторые черепные кости может проходить очень большое количество вен. И такие кости называются «диплозом».


Схема разновидности костей

Если разбирать классификацию костей по происхождению, то можно выделить два основных вида. Это кости первичные и кости вторичные.

Первичные развиваются из так называемой мезенхимы, и стадий развития проходят всего лишь две: костную и соединительнотканную. К первичным костям можно отнести многочисленные покровные кости черепа: верхнечелюстную, лобную, межтеменную, носовую, резцовую, теменную и чешую височной кости.


Первичные кости

Для них особо характерна эндсемальная оссификация. То есть, оссификация в соединительную ткань.

Вторичные кости развиваются из зачатка формирования костной и хрящевой тканей организма (склеротома мезодермы). В отличие от первичных костей, вторичные проходят сразу три главных стадии развития:

  1. Соединительнотканную.
  2. Хрящевую.
  3. Костную.

Таким образом, развивается абсолютное большинство костей скелета.

Значительно сложнее проходит процесс оссификации или окостенения вторичных костей. Задействованы здесь сразу три точки окостенения, две из которых – эпифазные, одна – диафазная.


Процесс оссификации

Сами по себе кости формируются на базе зачатков хрящей. Хрящевая ткань замещается потом костной и включает два вида окостенения: перихондральное окостенение и окостенение энхондральное.

Перихондральное начинается тогда, когда остеобласты на внутренней стороне надхрящницы образуют фиброзную ткань, а затем и пластинчатую. В этом же месте надхрящница преобразуется в надкостницу и формирует костную манжетку. Она же нарушает питание хряща, и он постепенно разрушается.

Энхондральное окостенение начинается примерно тогда, когда оканчивается перихондральное. Центры данного вида окостенения появляются в разное время в эпифазах длинных костей. В этих же центрах хрящ резорбируется, после чего формируется энхондральная кость. После неё появляется кость перихондральная. Дополнительные точки оссификации – апофизы – появляются ближе к концу плодного периода. Окостеневшие же эпифазы и диафиз соединяются с помощью хрящевых пластинок в трубчатых костях.

Хрящевые пластинки по-другому называются метафизарными хрящами (на рисунке под номером 5).

Хрящевые пластинки

Эти хрящи располагаются, как раз-таки, в зоне непосредственного роста. И кость растёт именно за счёт них. Прекращается рост с последующей оссификацией. Проще говоря, сливаются воедино все основные точки и добавочные. После чего они соединяются в одну сплошную массу, и происходит дальнейшее синостозирование.

Кости любого позвоночного животного формируются не просто так, а по определённой закономерности. Эту закономерность впервые выявил П.Ф. Лесгафт, основоположник современной функциональной анатомии.

Среди этих закономерностей Лесгафт особенно подчёркивал принцип образования костной ткани. Далее он говорил о степенях развития кости, так как развитие происходит так же по определённой закономерности. О прочности и лёгкости костей, о внешней форме и её последующей перестройки Лесгафт так же не забывал.

Теперь более подробно хочется сказать о костной ткани. Она «имеет привычку» образовываться именно в тех местах, где происходит наибольшее натяжение или сжатие.

Существует некая закономерность: прямо пропорционально развитию костной структуры. То есть, чем лучше развиты мышцы, тем лучше будут развиты и кости.


Интенсивность деятельности мышц

Их внешняя форма (костей) может меняться под давлением или растяжением. Рельеф и форма также зависят от мышц. Таким образом, если мышца соединена с костью сухожилием, то формируется бугор. Если же мышца вплетена в накостницу, то углубление.

При оптимально затрачиваемом костном материале арочное и трубчатое строение костей обеспечивает большую прочность и лёгкость.

Сама по себе внешняя форма костей напрямую зависит от того давления, которое оказывают на них (кости) окружающие ткани. Кроме того, внешняя форма может несколько видоизмениться при давлении на кость различных органов. Здесь стоит пояснить: кости образуют для органов так называемые «костные вместилища» или ямки. Соответственно, малейшее изменение костей приведёт к изменению органов и наоборот. Там, где проходят сосуды, на костях имеются определённые борозды. К тому же измениться форма костей может и при увеличении или же при уменьшении давления.

К тому же форма кости может неплохо перестроиться. Происходит это под влиянием различных внешних сил. Также на перестройку оказывает сильное влияние время. К примеру, если понаблюдать за молодыми и старыми животными, то выяснится, что у молодняка рельеф кости сильно сглажен.


Сглаженный рельеф кости

А вот у старых животных, наоборот, очень и очень резко выражен.

И всё вышеописанное ещё раз подтверждает, как всё в организме взаимосвязано. К примеру, если у животного (или даже у человека) повреждены кости, то это скажется и на внутренних тканях и органах. И если оказать своевременную и правильную помощь, то животное проживёт долгую и насыщенную жизнь.

Влияние различных факторов на развитие кости

Говоря о различных факторах, оказывающих влияние на кости скелета, нельзя не упомянуть эндокринную систему. При помощи определённых гормонов (женских или мужских), эта же система регулирует деятельность всех внутренних органов. Сами гормоны выделяются в кровь эндокринными клетками. Кроме внутренних органов, эндокринная система оказывает довольно-таки значительное влияние на развитие всех костей скелета. И таким образом, все главные точки окостенения появляются ещё до начала созревания.

Кроме того, выявлена зависимость строения скелета от состояния лошади. ЦНС осуществляет всю трофику кости. Когда трофика усиливается, то количество костной ткани в ней увеличивается в разы. Она становится значительно плотнее и компактнее. Если же она становится слишком плотной и слишком компактной, то есть риск развития остеосклероза. Когда трофика слабеет, кость, соответственно, разряжается. И начинается другое неприятное заболевание – остеопороз.

Кроме эндокринной и нервной систем, состояние кости зависит ещё и от кровеносной.


Влияние на кости кровеносной системы

Сам процесс оссификации, начиная от момента появления самой первой точки окостенения и заканчивая синостозирования, проходит при участии сосудов. Проникая в хрящ, сосуды его ещё больше разрушают. Сам же хрящ будет замещён костной тканью. После рождения оссификация и рост костей также протекают в очень тесной взаимосвязи и зависимости от кровоснабжения. Это происходит в силу того, что формирование костных пластин базируется вокруг сосудов крови.

Все изменения, происходящие в кости, как уже говорилось выше, зависят от физических нагрузок.

Именно благодаря им компактное вещество внутри кардинально перестраивается. В этом случае может наблюдаться увеличение размеров и количества остеонов. Если нагрузка неправильно дозирована, то могут возникнуть серьёзные осложнения. Если же наоборот, правильно, то это значительно замедлит все процессы старения в кости.

В молодом возрасте, понятное дело, скорость резорбции ещё довольно низкая, а костный матрикс образуется быстро. В зрелом и старческом возрастах все изменения скелета связывают со значительно возросшей скоростью резорбции и низкими процессами образования костного вещества.

Так или иначе, кость абсолютно любого живого организма – структура динамическая. Она способна приспособится к постоянно меняющимся условиям окружающей среды.

  • 10-11. Развитие мозгового и лицевого черепа. Череп и внутричерепное давление в онтогенезе. Производные висцеральных дуг.
  • 12. Варианты и пороки развития черепа.
  • 13. Череп новорожденного. Возрастная динамика черепа.
  • 14. Форма черепа в норме. Критика расистских теорий.
  • 15. Виды соединения костей: критерии классификации, закономерности строения.
  • 16. Классификация суставов (по сложности организации, форме суставных поверхностей, осям движений).
  • 17. Обязательные и вспомогательные элементы суставов: закономерности строения, положения, роль в норме и патологии.
  • 18. Сходство и различия в организации гомологичных компонентов костно-суставного аппарата верхней и нижней конечности.
  • 19. Физиологическое и функциональное положение суставов. Активные и пассивные движения.
  • 21. Общие возрастные особенности соединений костей скелета.
  • 2. Строение тела эмбриона. Зародышевые листки. Формы их организации, компоненты и основные производные.
  • 5. .Жаберный аппарат в развитии человека, его компоненты, основные производные.
  • 6.-Смотри 2вопрос.
  • 9.Возростная периодизация и ее принципы.
  • 10. К. Гален и его роль в анатомии и медицине.
  • 11. А. Визалий и его роль в анатомии и медицине.
  • 12. В. Гарвей и его роль в анатомии и медицине.
  • 13. Н.И. Пирогов его роль в анатомии и медицине, основные работы.
  • 14. П.Ф. Лесгафт и его роль в анатомии и профилактической медицине.
  • 1. Ход развития стенок полости рта. Аномалии.
  • 3. Жаберные карманы, их производные. Аномалии.
  • 6. Отделы пищеварительного тракта и план строения их стенок. Сфинктерный аппарат пищеварительного тракта.
  • 8. Развитие поджелудочной железы. Аномалии.
  • 1. Стадии развития почки. Принципы организации, роль и дальнейшие превращения компонентов предпочки и первичной почки.
  • 3. Почка как паренхиматозный орган. Структурные полимеры почки и критерии их выделения. Нефрон как структурно-функциональная ед. Почки. Чудесная сосудистая сеть.
  • 4.Почечные чашечки, лоханка, мочеточник, мочевой пузырь – исходные представления о механизмах уродинамики. Механизмы фиксации и подвижности мочевого пузыря.
  • 1. Фило- и онтогенез дыхательной системы.
  • Мозжечковые пути.
  • Нисходящие проводящие пути:
  • Пирамидные пути
  • Экстрапирамидные пути
  • 12 Пар черепно-мозговых нервов
  • 1. Кость как орган, компоненты кости, закономерности их строения и топографии, роль. Функции скелета.

    Кость – самостоятельный орган, состоит из тканей, главная – костная.

    Химический состав кости и ее физические св-ва.

    Костное вещество состоит из химических веществ: органических (оссеин) и неорганических (солей кальция – его фосфатов). Эластичность кости зависит от оссеина, а твердость – от минеральных солей.

    Структурной единицей кости является остеон (система костных пластинок, концентрически расположенных вокруг центрального канала, содержащего сосуды и нервы; остеоны не прилегают друг к другу в плотную и промежутки между ними заполнены интерстициальными костными пластинками. Остеоны располагаются соответственно функциональной нагрузки на кость. Остеоны и вставочные пластинки образуют компактное корковое вещество кости). Наружный слой кости представлен пластинкой компактного вещества (построенный из пластинчатой костной ткани, пронизанной системой тонких питательных канальцев, одни ориентированы параллельно поверхности кости, в трубчатых – вдоль, в других – прободающие – каналы Фолькмана ). Каналы Фолькмана служат продолжением крупных питательных каналов, открывающихся на поверхности кости в виде отверстий. Через питательные отверстия в кость, в систему ее костных канальцев входят артерия, нерв и выходит вена . Под компактным – располагается губчатое, после губчатого (пористое, построенное из костных балок с ячейками между ними). Внутри диафиза находится костно-мозговая полость, содержащая костный мозг. Кроме суставных поверхностей, покрытых хрящом, снаружи кость покрыта надкостницей. Надкостница – тонкая соединительнотканная пластинка, которая богата кровеносными и лимфатическими сосудами, нервами. В ней выделяют два слоя – наружный волокнистый, внутренний – ростковый, комбиальный (остеогенный, костеобразующий), прилежит к костной ткани. За счет надкостницы кость растет в толщину. Внутри кости находится костный мозг. Во внутриутробном периоде у новорожденного содержится красный костный мозг в костях, выполняющий кроветворную и защитную ф-ции; он представлен сетью ретикулярных волокон и клеток, в петлях этой сети находятся молодые и зрелые клетки крови и лимфоидные элементы. В костном мозге разветвляются нервы и сосуды. У взрослого человека крастный костный мозг содержится только в ячейках губчатого вещества плоских костей, в губчатых костях, эпифизах трубчатых костей. В костно-мозговой полости диафизов трубчатых костей находится желтый костный мозг, представляющий собой перерожденную ретикулярную строму с жировыми включениями.

    Функции костной ткани:

      Опора для мягких тканей

      Выполнение всех движений

      Формирование полости для органов

      Защитная

      Ф-ция гемопоэза

      Депо для минеральных веществ и микроэлементов.

    Ф-ции скелета:

    • ф-ция длинных и коротких рычагов, приводимых в движение мышцы

    образует вместилище для жизненно важных органов.

    2. Стадии развития костей. Первичные и вторичные кости. Прямой и непрямой остеогенез.

    Скелет развивается из мезенхимы, представляющей зародышевую малодифференцированную соединительную ткань. Покровные кости черепа и кости лица формируются на месте соединительной ткани - эндесмально, а другие - на месте хряща - перихондрально (позднее, с появлением надкостницы, периостально) или энхондрально. Все эти процессы начинаются в конце второго месяца внутриутробного периода, когда в организме зародыша имеются все другие виды тканей. Кости, формирующиеся на месте соединительной ткани, так называемые первичные кости, проходят два этапа развития: перепончатый и костный. Кости, развивающиеся на месте хряща, называются вторичными и проходят три этапа: соединительнотканный, хрящевой и костный. При эндесмальном окостенении на месте будущих костей появляются островки окостенения в виде концентрации мезенхимных клеток, участвующих в образовании фиброзных волокон, и множества кровеносных сосудов. Из мезенхимных клеток дифференцируются клетки остеобласты, которые вырабатывают межклеточное вещество, состоящее из оссеина и солей кальция. Фиброзные волокна пропитываются межклеточным веществом и замуровывают остеобласты. Последние после этого переходят в состояние зрелых клеток костной такни - в остеоциты. Аналогично происходит перихондральное (периостальное) окостенение за счет клеток надхрящницы (надкостницы). Эндохондральное окостенение происходит путем прорастания в хрящевые закладки костей кровеносных сосудов с окружающей их мезенхимой. Мезенхима, прилегающая к образующейся кости, превращается в надкостницу. Для внутренней поверхности костей черепа надкостницей является наружный слой твердой мозговой оболочки. Процесс остеогенеза продолжается в направлении образования остеокластов (костедробителей) из мезенхимных клеток, окружающих сосуды. После рождения в скелете новорожденного преобладает хрящевая ткань с множеством ядер окостенения, называемых первичными. В дальнейшем появляются вторичные ядра окостенения. Как первичные, так и вторичные ядра возникают у девочек раньше, чем у мальчиков. Ядра окостенения вначале появляются в центральных отделах диафиза, а затем в эпифизах. Позвонки (за исключением копчиковых позвонков) в конце второго месяца эмбрионального периода имеют два ядра в дуге, слившиеся из нескольких ядер, и одно основное - в теле. В течение первого года жизни ядра дуги, развиваясь в дорсальном направлении, срастаются друг с другом. Этот процесс протекает быстрее в шейных позвонках, чем в копчиковых. Чаще всего к семилетнему возрасту дуги позвонков, за исключением I крестцового позвонка, сращены (иногда крестцовый отдел остается незакрытым до 15-18-летнего возраста). В дальнейшем наступает костное соединение ядер дуги с ядром тела позвонка; это соединение появляется в возрасте 3-6 лет и раньше всего в грудных позвонках. В возрасте 8 лет у девочек, 10 лет у мальчиков на краях тела позвонка возникают эпифизарные кольца, которые образуют краевые валики тела позвонка. В период полового созревания или несколько позже заканчивается оссификация остистых и поперечных отростков, имеющих на своих верхушках дополнительные вторичные ядра окостенения. Несколько иначе развиваются атлант и осевой позвонок . Срастание передней и задней дуг атланта в одну кость происходит в возрасте 5-6 лет; при этом еще до образования костной передней дуги позвонка в ее хрящевой закладке появляется участок со своим парным ядром окостенения, который в возрасте 4-5 лет присоединяется к телу осевого позвонка, образуя его зуб. Последний соединяется с внутренней поверхностью передней дуги атланта при посредстве сустава - атлантоосевой сустав. Крестцовые позвонки, числом 5, срастаются, образуя крестец сравнительно поздно - на 18-25-м году жизни. Начиная с 15 лет происходит срастание трех нижних, а к 25 годам -двух верхних позвонков. Рудиментарные копчиковые позвонки отличаются тем, что в них весьма неравномерно появляются ядра окостенения:в I на 2-3-й неделе после рождения, во II - в 4-8 лет, в III -в 9-13 лет и, наконец, в IV - в 15 лет, а срастание их друг с другом, вначале нижних, затем верхних, продолжается и после 30 лет. Позвоночный столб как целое с возрастом проходит различные стадии изменения своих размеров и формы. В первые два года жизни он особенно интенсивно растет, почти удваивается в длину, до 16 лет замедляется рост в длину, после чего позвоночник снова активно растет, достигая у взрослого длины, превышающей более чем в 3 раза длину позвоночника новорожденного. Считается, что до 2 лет позвонки увеличиваются так же интенсивно, как и межпозвоночные диски, а после 7 лет относительная величина диска значительно уменьшается. Студенистое ядро содержит большое количество воды и имеет значительно большие размеры у ребенка, чем у взрослого. У новорожденного позвоночный столб в переднезаднем направлении прямой. В дальнейшем в результате целого ряда факторов: влияния работы мышц, самостоятельного сидения, тяжести головы и др. появляются изгибы позвоночного столба. В первые 3 мес жизни происходит образование шейного изгиба (шейный лордоз). Грудной изгиб (грудной кифоз) устанавливается к 6-7 мес, поясничный изгиб (поясничный лордоз) достаточно ясно сформирован к концу года жизни. Закладка ребер состоит вначале из мезенхимы, которая залегает между мышечными сегментами и замещается хрящом. Процесс окостенения ребер протекает, начиная со второго месяца внутриутробного периода, перихондрально, а несколько позже - энхондрально. Костная ткань в теле ребра нарастает кпереди, а ядра окостенения в области угла ребра и в области головки появляются в возрасте 15-20 лет. Передние края верхних девяти ребер соединяются с каждой стороны хрящевыми грудинными полосками, которые, приблизившись друг к другу сначала в верхних отделах, а затем и в нижних, соединяются между собой, формируя таким образом грудину. Этот процесс протекает на 3-4-м месяце внутриутробного периода. В грудине различают первичные ядра окостенения для рукоятки и тела и вторичные ядра окостенения для ключичных вырезок и для мечевидного отростка. Процесс окостенения в грудине протекает неравномерно в разных ее частях. Так, в рукоятке первичное ядро окостенения появляется на 6-м месяце внутриутробного периода, к 10-му году жизни происходит слияние частей тела, сращение которых заканчивается к 18 годам. Мечевидный отросток, несмотря на то, что у него появляется вторичное ядро окостенения к 6 годам, нередко остается хрящевым. Грудина в целом окостеневает в возрасте 30-35 лет, иногда еще позже и то не всегда. Образованная 12 парами ребер, 12 грудными позвонками и грудиной в совокупности с суставно-связочным аппаратом, грудная клетка под влиянием определенных факторов проходит целый ряд этапов развития. Развитие легких, сердца, печени, а также положение тела в пространстве - лежание, сидение, хождение - все это, изменяясь в возрастном и функциональном отношении, обусловливает изменение грудной клетки. Основные образования грудной клетки - спинные борозды, боковые стенки, верхняя и нижняя апертуры грудной клетки, реберная дуга, подгрудинный угол - изменяют свои черты в том или другом периоде своего развития, приближаясь каждый раз к особенностям грудной клетки взрослого человека. Считается, что развитие грудной клетки проходит четыре основных периода: от рождения до двухлетнего возраста отмечается очень интенсивное развитие; на втором этапе, от 3 до 7 лет, развитие грудной клетки проходит достаточно быстро, но медленнее, чем в первом периоде; третий этап, от 8 до 12 лет, характеризуется несколько замедленным развитием, четвертый этап - период полового созревания, когда также отмечается усиленное развитие. После этого замедленный рост продолжается до 20-25 лет, когда и заканчивается.

    Каждая кость (лат. Оs - кость) является самостоятельным органом. Она имеет определенную форму, величину, строение. Кость как орган у взрослого животного состоит из тесно связанных друг с другом следующих компонентов:

    1) Надкостница - periosteum, располагается на поверхности кости и состоит из двух слоев. Наружный (фиброзный) слой построен из плотной соединительной ткани и выполняет защитную функцию, укрепляет кость и увеличивает ее упругие свойства. Внутренний (oстеогенный) слой надкостницы построен из рыхлой соединительной ткани, в которой имеются нервы, сосуды и значительное количество остеобластов (остеообразующих клеток). За счет этого слоя происходит развитие, рост в толщину и регенерация костей после повреждения. Надкостница прочно срастается с костью при помощи соединительно-тканных прободающих (шарпеевских) волокон, проникающих в глубь кости. Таким образом, надкостница выполняет защитную, трофическую и остеообразующую функции.

    Кость без надкостницы, как дерево без коры, существовать не может. Надкостница же, с аккуратно извлеченной из нее костью, может вновь образовывать кость за счет неповрежденных клеток своего внутреннего слоя.

    2) Компактное (плотное) вещество кости – substantia compacta -располагается за надкостницей и построено из пластинчатой костной ткани, которая формирует костные перекладины (балки). Отличительной особенностью компактного вещества является плотное расположение костных перекладин . Прочность компакты обеспечивается слоистым строением и каналами, внутри которых располагаются сосуды, несущие кровь. По прочности компактное вещество приравнивается к чугуну или граниту.

    3) Губчатое вещество кости - substantia spongiosa – располагается под компактным веществом внутри кости и построено так же из пластинчатой костной ткани. Отличительной особенностью губчатого вещества является то, что костные перекладины располагаются рыхло и образуют ячейки, поэтому губчатое вещество действительно напоминает по строению губку. По сравнению с компактным оно обладает гораздо больше выраженными деформационными свойствами и формируется именно в тех местах, где на кость действуют силы сжатия и растяжения. Направление костных балок губчатого вещества соответствует основным линиям напряжения. Упругие деформации в губчатом веществе выражены значительно сильнее (4-6 раз). Распределение компактного и губчатого веществ зависит от функциональных условий кости. Компактное вещество находится в тех костях и в тех частях их, которые выполняют функции опоры и движения (например, в диафизах трубчатых костей). В места, где при большом объеме требуется сохранить легкость и вместе с тем прочность, образуется губчатое вещество (например, в эпифизах трубчатых костей).



    4) Внутри кости располагается костномозговая полость – cavum medullae, стенки которой изнутри, так же как и поверхность костных балок покрыта тонкой волокнистой соединительно-тканной оболочкой эндоостом -endoosteum. Как и периост, эндоост в своем составе имеет остеобласты, за счет которых кость растет изнутри и восстанавливается при переломах.

    5) В ячейках губчатого вещества и костномозговой полости находится красный костный мозг – medulla ossium rubra, в котором протекают процессы кроветворения. У плодов и новорожденных все кости кроветворят, но с возрастом, постепенно, происходит замещение миелоидной (кроветворной) ткани на жировую и красный косный мозг превращается в желтый - medulla ossium flava - и теряет функцию кроветворения (у домашних животных этот процесс начинается со второго месяца после рождения). Соотношение между красным и желтым костным мозгом у месячных телят составляет 9:1, а у взрослых – 1:1. Дольше всего сохраняется красный костный мозг в губчатом веществе позвонков и грудной кости.

    6) Суставной хрящ – cartilago articularis - покрывает суставные поверхности кости и построен из гиалиновой хрящевой ткани. Толщина хряща очень сильно варьирует. Как правило, в проксимальном отделе кости он тоньше, чем в дистальном. Суставной хрящ не имеет надхрящницы и никогда не подвергается окостенению. При большой статической нагрузке он истончается.

    Таким образом, в кости взрослого животного послойно выделяют:

    1) надкостницу, 2) компактное вещество, 3) губчатое вещество, 4)костномозговую полость с эндоостом, 5) костный мозг, 6) суставной хрящ.

    У растущей кости, кроме указанных выше 6-ти компонентов имеются еще и другие, формирующие зоны роста кости. В такой кости есть еще метафизарный хрящ, отделяющий тело кости (диафиз) от ее концов (эпифизов), и три вида особо построенной костной ткани, контактирующей с данным хрящом и называемой субхондральной костью.

    КЛАССИФИКАЦИЯ КОСТЕЙ

    В основу классификации положены форма (строение), развитие и функция костей.

    По форме различают следующие типы костей:

    1) Длинные кости (os longum) бывают дугообразными (ребра) и трубчатыми. Для них характерно преобладание длины над шириной и толщиной. Трубчатые кости выполняют в скелете функцию рычагов передвижения, здесь совершаются движения с большой амплитудой. В них различают удлиненную часть - тело, или диафиз, и утолщенные концы - эпифизы. Свое название они получили благодаря тому, что в средней части диафиза формируется полость для костного мозга. Между диафизом и эпифизом находится метафиз, который, как говорилось выше, за счет метафизарного хряща обеспечивает рост костей в длину. Среди трубчатых костей выделяют: длинные трубчатые (плечевая, бедренная, кости предплечья и голени) и короткие трубчатые (кости пясти, плюсны, фаланги пальцев). При этом следует отметить, что рост отдельных костей скелета может происходить асинхронно. Например, лучевая кость растет быстрее локтевой (возрастное отклонение, не выходящее за границы нормы).

    2) Короткие (губчатые) кости (os breve) состоят из губчатого вещества, покрыты снаружи тонким слоем компакты или суставным хрящом. Имеют форму неправильного куба или многогранника; их длина, ширина и толщина близки по размеру. К ним относятся кости запястья и заплюсны. Они располагаются в местах, где большая подвижность сочетается с большой нагрузкой, и чаще выполняют рессорную функцию. К этому типу костей следует так же относить сесамовидные кости, развивающиеся за счет окостенения сухожилий мышц.

    3) Плоские кости (os planum) участвуют в образовании стенок полостей и поясов конечностей, выполняя защитную функцию (кости крыши черепа, грудина, лопатка, кости таза). Эти кости представляют собой обширные поверхности для прикрепления мышц, на них различают края и углы. Состоят из двух слоев компакты, между которыми находится небольшое количество губчатого вещества.

    4) Cмешанные кости (os irregulare, mixtum). Имеют сложную форму и сочетают в себе черты устройства нескольких типов. Эти кости состоят из нескольких частей, имеющих различное строение, очертание и происхождение. К ним относятся, например позвонки, кости основания черепа. В некоторых костях черепа проходит большое количество вен, тогда эти кости называются «диплоэ».

    5) Воздухоносные кости (os pneumaticum) имеют в своем теле полость (синус, пазуху), выстланную слизистой оболочкой и заполненную воздухом (верхнечелюстная, лобная, клиновидная). Последние могут сообщаться с носовой полостью.

    По происхождению различают:

    1) Первичные кости - это кости, которые развиваются из мезенхимы и проходят только две стадии развития: соединительно-тканную и костную. К ним относятся покровные кости черепа: резцовая, верхнечелюстная, носовая, лобная, теменная, межтеменная, чешуя височной кости. Для них характерна эндесмальная (en - в, desma -соединительная ткань) оссификация

    У новорожденных и молодых животных покровные кости связаны между собой и с другими костями соединительно-тканными пластинками - родничками (лобно-теменной, затылочно-теменной). Роднички обеспечивают пластичность черепа, что важно при рождении и рост черепа. К первичным костям так же относятся ключица, нижняя челюсть, хоботковая кость свиньи, сесамовидные кости и кость полового члена хищных.

    2) Вторичные кости - это кости, которые развиваются из склеротома мезодермы и проходят три стадии развития (соединительно-тканную, хрящевую, костную). К ним относятся большинство костей внутреннего скелета.

    Окостенение вторичных костей происходит сложнее. Оссификация, в частности, в трубчатых костях протекает из трех точек окостенения - двух эпифизарных и одной диафизарной (основные точки окостенения ). Сам же процесс формирования костей на базе хрящевых зачатков протекает следующим образом. Замещение хрящевой ткани костной включает перихондральное и энхондральное окостенение. Перихондральное окостенение начинается с появления с внутренней стороны надхрящницы в средней части диафиза остеобластов, образующих в виде манжетки сначала фиброзную костную ткань, а затем пластинчатую. Хрящевые клетки внутри перихондрального пояска рассасываются, основное вещество хряща обызвествляется, прочность диафиза возрастает. В этом месте надхрящница становится надкостницей, формируя костную манжетку, и перихондральное окостенение переходит в периостальное. Образование костной манжетки нарушает питание хряща, начинается необратимый процесс разрушения, который усиливается благодаря деятельности специальных клеток - хондрокластов. В образующиеся полости врастают кровеносные сосуды, а вместе с ними проникают элементы остеобластической ткани, последняя дифференцируется на остеобласты и остеокласты. Остеокласты разрушают хрящ, а остеобласты размножаются и превращаются в костные клетки, возникает энхондральная кость. В дальнейшем периостальная и энхондральная кости растут параллельно. Периостальная костная манжетка растет в длину к эпифизам хряща и в толщину. Эпифизы некоторое время остаются хрящевыми, поэтому они растут быстрее диафизов и в длину и в ширину. Энхондральные центры окостенения появляются в эпифизах длинных костей в разное время. В этих центрах происходит обызвествление хряща, его резорбция, формируется сначала энхондральная, а затем перихондральная кость. К концу плодного периода в костях могут появляться и дополнительные точки окостенения- апофизы, появляются там, где кости имеют значительные выступы, бугры. Окостеневший диафиз и эпифизы соединяются в трубчатых костях хрящевыми пластинками - метафизарными хрящами - зонами роста. За счет метафизарного хряща происходит рост кости в длину, с их окостенением прекращается рост кости.

    Рост кости заканчивается тогда, когда все основные и добавочные точки окостенения сливаются в одну общую костную массу, т.е. происходит синостозирование.

    Кость представляет собой сложную материю, это сложный анизотропный неравномерный жизненный материал, обладающий упругими и вязкими свойствами, а также хорошей адаптивной функцией. Все превосходные свойства костей составляют неразрывное единство с их функциями.

    Функции костей главным образом имеет две стороны: одна из них – это образование скелетной системы, используемой для поддержания тела человека и сохранения его нормальной формы, а также для защиты его внутренних органов. Скелет является частью тела, к которой крепятся мышцы и которая обеспечивает условия для их сокращения и движения тела. Скелет сам по себе выполняет адаптивную функцию путем последовательного изменения своей формы и структуры. Вторая сторона функции костей состоит в том, чтобы путем регулирования концентрации Ca 2+ , H + , HPO 4 + в электролите крови поддерживать баланс минеральных веществ в теле человека, то есть функцию кроветворения, а также сохранения и обмена кальция и фосфора.

    Форма и структура костей являются различными в зависимости от выполняемых ими функций. Разные части одной и той же кости вследствие своих функциональных различий имеют разную форму и структуру, например, диафиз бедренной кости и головка бедренной кости. Поэтому полное описание свойств, структуры и функций костного материала является важной и сложной задачей.

    Структура костной ткани

    «Ткань» представляет собой комбинированное образование, состоящее из особых однородных клеток и выполняющих определенную функцию. В костных тканях содержатся три компонента: клетки, волокна и костный матрикс. Ниже представлены характеристики каждого из них:

    Клетки: В костных тканях существуют три вида клеток, это остеоциты, остеобласт и остеокласт. Эти три вида клеток взаимно превращаются и взаимно сочетаются друг с другом, поглощая старые кости и порождая новые кости.

    Костные клетки находятся внутри костного матрикса, это основные клетки костей в нормальном состоянии, они имеют форму сплющенного эллипсоида. В костных тканях они обеспечивают обмен веществ для поддержания нормального состояния костей, а в особых условиях они могут превращаться в два других вида клеток.

    Остеобласт имеет форму куба или карликового столбика, они представляют собой маленькие клеточные выступы, расположенные в довольно правильном порядке и имеют большое и круглое клеточное ядро. Они расположены в одном конце тела клетки, протоплазма имеет щелочные свойства, они могут образовывать межклеточное вещество из волокон и мукополисахаридных белков, а также из щелочной цитоплазмы. Это приводит к осаждению солей кальция в идее игловидных кристаллов, расположенных среди межклеточного вещества, которое затем окружается клетками остеобласта и постепенно превращается в остеобласт.

    Остеокласт представляет собой многоядерные гигантские клетки, диаметр может достигать 30 – 100 µm, они чаще всего расположены на поверхности абсорбируемой костной ткани. Их цитоплазма имеет кислотный характер, внутри ее содержится кислотная фосфотаза, способная растворять костные неорганические соли и органические вещества, перенося или выбрасывая их в другие места, тем самым ослабляя или убирая костные ткани в данном месте.

    Костный матрикс также называется межклеточным веществом, он содержит неорганические соли и органические вещества. Неорганические соли также называются неорганическими составными частями костей, их главным компонентом являются кристаллы гидроксильного апатита длиной около 20-40 nm и шириной около 3-6 nm. Они главным образом состоят из кальция, фосфорнокислых радикалов и гидроксильных групп, образующих , на поверхности которых находятся ионы Na + , K + , Mg 2+ и др. Неорганические соли составляют примерно65% от всего костного матрикса. Органические вещества в основном представлены мукополисахаридными белками, образующими коллагеновое волокно в кости. Кристаллы гидроксильного апатита располагаются рядами вдоль оси коллагеновых волокон. Коллагеновые волокна расположены неодинаково, в зависимости от неоднородного характера кости. В переплетающихся ретикулярных волокнах костей коллагеновые волокна связаны вместе, а в костях других типов они обычно расположены стройными рядами. Гидроксильный апатит соединяется вместе с коллагеновыми волокнами, что придает кости высокую прочность на сжатие.

    Костные волокна в основном состоит из коллагенового волокна, поэтому оно называется костным коллагеновым волокном, пучки которого расположены послойно правильными рядами. Это волокно плотно соединено с неорганическими составными частями кости, образуя доскообразную структуру, поэтому оно называется костной пластинкой или ламеллярной костью. В одной и той же костной пластинке большая часть волокон расположена параллельно друг другу, а слои волокон в двух соседних пластинках переплетаются в одном направлении, и костные клетки зажаты между пластинками. Вследствие того, что костные пластинки расположены в разных направлениях, то костное вещество обладает довольно высокой прочностью и пластичностью, оно способно рационально воспринимать сжатие со всех направлений.

    У взрослых людей костная ткань почти вся представлена в виде ламеллярной кости, и в зависимости от формы расположения костных пластинок и их пространственной структуры эта ткань подразделяется на плотную кость и губчатую кость. Плотная кость располагается на поверхностном слое ненормальной плоской кости и на диафизе длинной кости. Ее костное вещество плотное и прочное, а костные пластинки расположены в довольно правильном порядке и тесно соединены друг с другом, оставляя лишь небольшое пространство в некоторых местах для кровеносных сосудов и нервных каналов. Губчатая кость располагается в глубинной ее части, где пересекается множество трабекул, образуя сетку в виде пчелиных сот с разной величиной отверстий. Отверстия сот заполнены костным мозгом, кровеносными сосудами и нервами, а расположение трабекул совпадает с направлением силовых линий, поэтому хотя кость и рыхлая, но она в состоянии выдерживать довольно большую нагрузку. Кроме того, губчатая кость имеет огромную поверхностную площадь, поэтому она также называется Костю, имеющей форму морской губки. В качестве примера можно привести таз человека, средний объем которого составляет 40 см 3 , а поверхность плотной кости в среднем составляет 80 см 2 , тогда как поверхностная площадь губчатой кости достигает 1600 см 2 .

    Морфология кости

    С точки зрения морфологии, размеры костей неодинаковы, их можно подразделить на длинные, короткие, плоские кости и кости неправильной формы. Длинные кости имеют форму трубки, средняя часть которых представляет собой диафиз, а оба конца – эпифиз. Эпифиз сравнительно толстый, имеет суставную поверхность, образованную вместе с соседними костями. Длинные кости главным образом располагаются на конечностях. Короткие кости имеют почти кубическую форму, чаще всего находятся в частях тела, испытывающих довольно значительное давление, и в то же время они должны быть подвижными, например, это кости запястья рук и кости предплюсны ног. Плоские кости имеют форму пластинок, они образуют стенки костных полостей и выполняют защитную роль для органов, находящихся внутри этих полостей, например, как кости черепа.

    Кость состоит из костного вещества, костного мозга и надкостницы, а также имеет разветвленную сеть кровеносных сосудов и нервов, как показано на рисунке. Длинная бедренная кость состоит из диафиза и двух выпуклых эпифизарных концов. Поверхность каждого эпифизарного конца покрыта хрящом и образует гладкую суставную поверхность. Коэффициент трения в пространстве между хрящами в месте соединения сустава очень мал, он может быть ниже 0.0026. Это самый низкий известный показатель силы трения между твердыми телами, что позволяет хрящу и соседним костным тканям создать высокоэффективный сустав. Эпифизарная пластинка образована из кальцинированного хряща, соединенного с хрящом. Диафиз представляет собой полую кость, стенки которой образованы из плотной кости, которая является довольно толстой по всей ее длине и постепенно утончающейся к краям.

    Костный мозг заполняет костномозговую полость и губчатую кость. У плода и у детей в костномозговой полости находится красный костный мозг, это важный орган кроветворения в человеческом организме. В зрелом возрасте мозг в костномозговой полости постепенно замещается жирами и образуется желтый костный мозг, который утрачивает способность к кроветворению, но в костном мозге по-прежнему имеется красный костный мозг, выполняющий эту функцию.

    Надкостница представляет собой уплотненную соединительную ткань, тесно прилегающую к поверхности кости. Она содержит кровеносные сосуды и нервы, выполняющие питательную функцию. Внутри надкостницы находится большое количество остеобласта, обладающего высокой активностью, который в период роста и развития человека способен создавать кость и постепенно делать ее толще. Когда кость повреждается, остеобласт, находящийся в состоянии покоя внутри надкостницы, начинает активизироваться и превращается в костные клетки, что имеет важное значение для регенерации и восстановления кости.

    Микроструктура кости

    Костное вещество в диафизе большей частью представляет собой плотную кость, и лишь возле костномозговой полости имеется небольшое количество губчатой кости. В зависимости от расположения костных пластинок, плотная кость делится на три зоны, как показано на рисунке: кольцевидные пластинки, гаверсовы (Haversion) костные пластинки и межкостные пластинки.

    Кольцевидные пластинки представляют собой пластинки, расположенные по окружности на внутренней и внешней стороне диафиза, и они подразделяются на внешние и внутренние кольцевидные пластинки. Внешние кольцевидные пластинки имеют от нескольких до более десятка слоев, они располагаются стройными рядами на внешней стороне диафиза, их поверхность покрыта надкостницей. Мелкие кровеносные сосуды в надкостнице пронизывают внешние кольцевидные пластинки и проникают вглубь костного вещества. Каналы для кровеносных сосудов, проходящие через внешние кольцевидные пластинки, называются фолькмановскими каналами (Volkmann’s Canal). Внутренние кольцевидные пластинки располагаются на поверхности костномозговой полости диафиза, они имеют небольшое количество слоев. Внутренние кольцевидные пластинки покрыты внутренней надкостницей, и через эти пластинки также проходят фолькмановские каналы, соединяющие мелкие кровеносные сосуды с сосудами костного мозга. Костные пластинки, концентрично расположенные между внутренними и внешними кольцевидными пластинками, называются гаверсовыми пластинками. Они имеют от нескольких до более десятка слоев, расположенных параллельно оси кости. В гаверсовых пластинках имеется один продольный маленький канал, называемый гаверсовым каналом, в котором находятся кровеносные сосуды, а также нервы и небольшое количество рыхлой соединительной ткани. Гаверсовы пластинки и гаверсовы каналы образуют гаверсову систему. Вследствие того, что в диафизе имеется большое число гаверсовых систем, эти системы называются остеонами (Osteon). Остеоны имеют цилиндрическую форму, их поверхность покрыта слоем цементина, в котором содержится большое количество неорганических составных частей кости, костного коллагенового волокна и крайне незначительное количество костного матрикса.

    Межкостные пластинки представляют собой пластинки неправильной формы, расположенные между остеонами, в них нет гаверсовых каналов и кровеносных сосудов, они состоят из остаточных гаверсовых пластинок.

    Внутрикостное кровообращение

    В кости имеется система кровообращения, например, на рисунке показа модель кровообращения в плотной длинной кости. В диафизе есть главная питающая артерия и вены. В надкостнице нижней части кости имеется маленькое отверстие, через которое внутрь кости проходит питающая артерия. В костном мозге эта артерия разделяется на верхнюю и нижнюю ветви, каждая из которых в дальнейшем расходится на множество ответвлений, образующих на конечном участке капилляры, питающие ткани мозга и снабжающие питательными веществами плотную кость.

    Кровеносные сосуды в конечной части эпифиза соединяются с питающей артерией, входящей в костномозговую полость эпифиза. Кровь в сосудах надкостницы поступает из нее наружу, средняя часть эпифиза в основном снабжается кровью из питающей артерии и лишь небольшое количество крови поступает в эпифиз из сосудов надкостницы. Если питающая артерия повреждается или перерезается при операции, то, возможно, что снабжение кровью эпифиза будет заменяться на питание из надкостницы, поскольку эти кровеносные сосуды взаимно связываются друг с другом при развитии плода.

    Кровеносные сосуды в эпифизе проходят в него из боковых частей эпифизарной пластинки, развиваясь, превращаются в эпифизарные артерии, снабжающие кровью мозг эпифиза. Есть также большое количество ответвлений, снабжающих кровью хрящи вокруг эпифиза и его боковые части.

    Верхняя часть кости представляет собой суставный хрящ, под которым находится эпифизарная артерия, а еще ниже ростовой хрящ, после чего имеются три вида кости: внутрихрящевая кость, костные пластинки и надкостница. Направление кровотока в этих трех видах кости неодинаково: во внутрихрящевой кости движение крови происходит вверх и наружу, в средней части диафиза сосуды имеют поперечное направление, а в нижней части диафиза сосуды направлены вниз и наружу. Поэтому кровеносные сосуды во всей плотной кости расположены в форме зонтика и расходятся лучеобразно.

    Поскольку кровеносные сосуды в кости очень тонкие, и их невозможно наблюдать непосредственно, поэтому изучение динамики кровотока в них довольно затруднительно. В настоящее время с помощью радиоизотопов, внедряемых в кровеносные сосуды кости, судя по количеству их остатков и количеству выделяемого ими тепла в сопоставлении с пропорцией кровотока, можно измерить распределение температур в кости, чтобы определить состояние кровообращения.

    В процессе лечения дегенеративно-дистрофических заболеваний суставов безоперационным методом в головке бедренной кости создается внутренняя электрохимическая среда, которая способствует восстановлению нарушенной микроциркуляции и активному удалению продуктов обмена разрушенных заболеванием тканей, стимулирует деление и дифференциацию костных клеток, постепенно замещающих дефект кости.