Кровь и кровеносная система. Большой и малый круги кровообращения Филогенез, или эволюция кругов кровообращения

Для полноценного функционирования головного мозга требуется его постоянное и бесперебойное кровоснабжение. Нормальная деятельность мозговых центров напрямую зависит от беспрерывного поступления кислорода и питательных веществ, которые доставляются с кровью. Именно поэтому за работу мозга в первую очередь отвечает сосудистая система человеческого тела. Нервные клетки повреждаются быстрее остальных, в случае нарушений кровообращения. Даже кратковременный сбой системы кровотока может привести к потере сознания. Такая высокая чувствительность обусловлена острой потребностью мозга в кислороде и питательных веществах, в частности - в глюкозе.

Система кровоснабжения

Какие артерии направляются к черепу и питают мозг кровью? К ним относятся главные четыре сосуда: 2 внутренние сонные артерии и 2 позвоночные. От головы кровь отливает по 2 яремным внутренним венам.

Внутренние сонные артерии . Являются ветвями общих сонных сосудов и располагаются в области шеи, по ее бокам. Если приложить палец к телу в этом участке, то можно четко ощутить их пульсацию. Когда сонные артерии пережимают, то происходит внезапное нарушение мозговой деятельности и у человека случается обморок.

Левая артерия отходит от аортальной дуги. Вверху горла, у края гортани, общий сонный сосуд разделяется на внутренний и наружный. Внутренняя артерия проходит внутрь черепа и принимает непосредственное участие в кровоснабжении мозга и глазных яблок. В свою очередь, наружная сонная артерия обеспечивает кровью шею, кожный покров лица и головы.

Данные элементы сосудистой системы отходят от правой и левой подключичной артерии. Они проникают в область головы через отверстия, находящиеся в горизонтальных отростках позвонков шейного отдела. В полость черепа позвоночные артерии проходят через крупную затылочную щель.

Артерии системы мозгового кровообращения соединяются с дугой аорты и по этой причине в них всегда поддерживается высокое давление крови, движущейся с большой скоростью. Для нормализации кровотока перед его поступлением в головной мозг, позвоночные и сонные артерии имеют двойные изгибы в участке входа в череп. Эти изгибы называются сифоны и именно в них происходит замедление потока крови и снижение пульсовых колебаний.

Проникнув в полость головы, сонные и позвоночные сосуды объединяются в один, образуя у основания черепа Веллизиев круг. Этот артериальный круг большого мозга производит контроль над распределением поступающей крови во все отделы головного мозга и препятствует сбоям в системе кровоснабжения.

Мозговые артерии . От сонной внутренней артерии отделяются мозговые (передняя и средняя). Они отвечают за питание внутренней и наружной оболочки полушарий мозга. Они приводят кровь к лобной, височной и теменной долям, а также к глубоким отделам. Ветви позвоночных артерий состоят из задних мозговых сосудов, питающих доли затылочных полушарий, и из артерий, подающих кровь к стволу мозга.

От крупных мозговых артерий разветвляются многочисленные мелкие, которые погружаются в ткани головного мозга. Они образуют цельную капиллярную сеть.

Головной мозг является основным элементом центральной нервной системы, отвечающей за деятельность всех систем организма. Поэтому очень важно, чтобы кровоснабжение не нарушалось и мозговые структуры получали все необходимые вещества и кислород, которые поступают через главные артерии, направляющиеся к черепу.

Ведущие специалисты в области гематологии

Редактор страницы : Крючкова Оксана Александровна — врач-травматолог-ортопед

Профессор Шатохин Юрий Васильевич

ДМН, Зав. кафедрой гематологии РостГМУ.

Переливание крови оказывает сложное и многогранное влияние на жизненные функции организма больного.

В настоящее время изучены многие стороны действия этого весьма эффективного метода терапии, причем прежние представления о гемотрансфузии как о простом замещении потерянной массы крови или способе «раздражения» различных функций организма в значительной степени изменены и дополнены данными клинических наблюдений и экспериментальных исследований.

Кроме того, в известной степени изучены особенности действия различных методов переливания крови, и, таким образом, клиницисты получили возможность более целеустремленно и индивидуально направленно применять те или другие способы гемотрансфузии, с учетом характера заболевания и особенностей реактивности больного.

Вместе с тем необходимо отметить, что до самого последнего времени в трактовке различных сторон

действия трансфузии крови преобладали гуморальные теории, объясняющие не всю совокупность влияния гемотрансфузий на организм больного, а лишь отдельные изменения, происходящие после этого сложного лечебного мероприятия.

Наиболее распространенной и принятой большинством (авторов являлась гипотеза коллоидоклазии, предложенная А. А. Богомольцем. Эта гипотеза была выдвинута А. А. Богомольцем после большого количества экспериментальных и клинических наблюдений, проведенных главным образом в Центральном институте гематологии и переливания крови.

Согласно этой гипотезе, вследствие индивидуальной несовместимости белков крови донора и реципиента при гемотрансфузии в организме реципиента происходит сложный биологический процесс коллоидоклазии, который является основой стимулирующего действия перелитой крови. В связи со старением клеточных биоколлоидов - процессом, весьма распространенном при ряде патологических состояний, -наблюдается уплотнение и уменьшение их дисперсности, обезвоживание клеток и понижение внутриклеточного обмена. При этом отмечается резкое укрупнение белковых молекул клеточной протоплазмы, появление в ней различных включений, пигментных частиц, продуктов дегенерации.

Переливание крови по А. А. Богомольцу приводит к осаждению белковых мицелл плазмы крови реципиента и их последующему ферментативному расщеплению. Этот процесс распространяется и на клеточную протоплазму, в результате чего происходит освобождение ее от «балластных» элементов, повышение обмена веществ, улучшение процесса регенерации.

Важную роль в механизме стимулирующего действия трансфузии отводится А. А. Богомольцем ретикуло- эндотелиалыной системе.

Необходимо отметить, что А. А. Богомолец так называемую «активную мезенхиму» или «физиологическую систему соединительной ткани» рассматривал в отрыве от нервной системы, придавая ей автономное значение. Совершенно очевидно, что этот взгляд не соответствует современным представлениям и, естественно, подвергся резкой критике.

Многими экспериментально-клиническими исследованиями со всей убедительностью показано, что после переливания крови отчетливо выступает стимуляция деятельности органов и систем организма больного.

А. А. Багдасаров в экспериментальных исследованиях отмечал после переливания крови увеличение резервной щелочности крови в печеночной и воротной венах и уменьшение ее в артериях, что было, видимо, связано с усилением обмена веществ. К таким же выводам пришла Н. Л. Стоцик, которая обнаружила нарастание количества нейтрального жира в печеночной вене в посттрансфузионном периоде, что свидетельствует о мобилизации жировых запасов печени.

В ранних исследованиях А. А. Багдасарова, X. X. Владоса, М. С. Дульцина, И. А. Леонтьева, Н. Б. Медведевой,

Е. А. Тузлуковой, Н. Д. Юдиной и И. И. Юровской (1939) приводятся клинические наблюдения многочисленной группы больных после переливания крови. Авторы выделяют два типа ответной реакции на гемотрансфузию. При первом типе (25% больных) имеет место нарастание общего азота и белка сыворотки, а также уменьшение белкового коэфициента. Остаточный азот не изменяется, содержание хлоридов в крови несколько уменьшается, а количество калия в сыворотке увеличивается.

У больных второй группы (75%) отмечается уменьшение белков сыворотки (главным образом глобулинов), повышение белкового коэфициента, остаточного азота, падение хлоридов крови. Этот тип реакции в то время (1939) авторы рассматривали как одно из проявлений индивидуальной несовместимости белков крови донора и реципиента.

В дальнейших исследованиях учеников А. А. Богомольца было показано, что процесс коллоидоклазии наблюдается после переливания крови во всех органах и тканях, но бывает более выражен в тех органах, которые наиболее подвержены патологическим изменениям (А. А. Багдасаров, И. А. Леонтьев, Н. А. Федоров и др.).

Работы А. А. Богомольца и его учеников явились первыми глубокими исследованиями механизма действия переливания крови. Они сыграли положительную роль в развитии учения о переливании крови, так как позволили установить ряд новых фактов, объясняли многие неясные стороны стимулирующего влияния гемотрансфузий, повышали интерес к данной проблеме и послужили основой для дальнейших исследований.

Объединенная сессия Академии наук СССР и Академии медицинских наук СССР,

посвяшенная проблемам физиологического учения И. П. Павлова, ознаменовала начало нового, высшего этапа в развитии советской медицины и в том числе гематологии и переливания крови. Прошедшие в дальнейшем научные дискуссии по различным актуальным проблемам медицины сыграли также большую роль в мобилизации усилий ученых и врачей- практиков для критического рассмотрения и проверки основных положений теории переливания крови.

В этом направлении на расширенных пленумах и ученых советах Центрального института гематологии и переливания крови была проведена большая работа по творческому пересмотру гипотезы коллоидоклазии, Научная дискуссия в отношении этой гипотезы проводилась на базе нового фактического материала и учения И. П. Павлова о целостности организма и доминирующей роли центральной нервной системы, регулирующей все функции организма.

В своих выступлениях А. А. Багдасаров, Н. А. Федоров, П. С. Васильев, И. И. Федоров, И. Р. Петров и др. подвергли резкой критике важнейшие положения гипотезы коллоидоклазии. В корне ошибочными и механистическими признаны представления А. А. Богомольца о том, что основой реакции на переливание крови является встреча белковых систем донора и реципиента, что все посттрансфузионные процессы обусловлены лишь физико-химическими изменениями.

Многочисленными исследованиями большого числа авторов со всей наглядностью показано,

что после переливания крови действительно имеют место белковые коллоидные структурные изменения и что это одна из наиболее ранних реакций организма, однако сущность вопроса заключается в том, как понимать механизм этих изменений.

Н. А. Федоров и П. С. Васильев справедливо- указывали, что если белковые изменения являются результатом непосредственного взаимодействия коллоидов, то тогда, естественно, их можно уловить вне организма, т. е. при смешивании крови донора и реципиента in vitro. Однако в этих условиях коллоидно-структурных изменений обнаружить не удалось (П. С. Васильев, В. В. Суздалева).

Отсюда со всей очевидностью вытекает, что эти изменения опосредованы целостным организмом при решающей роли нервной системы и прежде всего ее центральных отделов - коры головного мозга и подкорковых рецепторов.

За последнее время Н. А. Федоров и его сотрудники (А. М. Намятышева, И. И. Зарецкий, Н. А. Мессинева, В. М. Родионов, Б. М. Ходоров) получили новые экспериментальные фактические данные, убеждающие в том, что посттрансфузионные белковые изменения представляют собой лишь частное проявление активации процессов обмена между кровью и тканями.

Было доказано, что количественные и качественные изменения белков крови связаны с мобилизацией резервных мелкодисперсных белков тканей

Альбуминов и с усилением поступления их в кровоток. Наиболее интенсивно этот процесс происходит в тканях печени и кишечника, где, как известно, скапливается большое количество резервных белков.

Одновременно с изменением белкового обмена происходят изменения и других вегетативных функций.

Твердо установлено, что значительным постгрансфузионным изменениям подвергаются водно-солевой, углеводный и основной обмены, терморегуляция и иммунобиологическое состояние организма. Н. А. Федорову и его сотрудникам со всей наглядностью удалось показать, что все эти вегетативные изменения после переливания крови непосредственно связаны с изменением функционального состояния высших отделов центральной нервной системы -. коры и подкорки. Авторы отмечали, что под действием перелитой крови изменяется условно-рефлекторная деятельность. Степень и характер изменений условно-рефлекторной деятельности зависят от типа высшей нервной деятельности.

Весьма показательным является тот факт, что изменение и восстановление условно-рефлекторной деятельности протекают параллельно с изменением и восстановлением вегетативных функций организма (белкового, водно-солевого, углеводного, основного обмена и др.).

Так, в экспериментах И. И. Федорова в изолированные вены конечностей животного вводилась чужеродная кровь,

что вызывало резкое падение кровяного давления и другие симптомы посттрансфузионного шока. Предварительное введение новокаина в данную область предупреждало появление шока. Результаты этих опытов не укладываются в основные положения коллоидоклазическои гипотезы А. А. Богомольца, а, наоборот, убеждают в нервно-рефлекторной природе реакций организма на переливание крови.

Клинические наблюдения также не подтверждают мнения А. А. Богомольца о том, что посттрансфузионные реакции зависят от индивидуальной несовместимости белков крови донора и реципиента. Опыт показал, что большинство клинически выраженных реакций возникает не в связи с индивидуальной несовместимостью крови, а в результате недочетов при заготовке и переливании крови, отсутствия учета противопоказаний к гемотрансфузии и других моментов.

Можно было бы привести еще много фактов, дающих основание для критики гипотезы А. А. Богомольца и его трактовки наблюдений, полученных при гемотрансфузиях. Все они подтверждают мнение о необходимости разработки новых путей для выявления механизма действия гемотрансфузий.

В настоящее время процесс пересмотра механизма действия переливаний крови еще не закончен,

но и теперь уже накопилось достаточно много фактов, позволяющих по-новому рассматривать как отдельные стороны действия гемотрансфузий, так и весь комплекс изменений, происходящих в организме больного.

Всеми признается, что переливания крови вызывают в организме реципиента сложный, но единый по своей направленности биологический процесс; все звенья этого процесса тесно связаны между собой. И естественно поэтому, что замещающее, стимулирующее, гемостатическое, антитоксическое и иммунобиологическое действие перелитой крови нельзя рассматривать в отрыве друг от друга.

При каждом переливании крови на организм больного воздействует сумма перечисленных и многих еще не изученных факторов, причем в различных случаях один иди несколько из них оказывают большее влияние, чем другие. Эти особенности и варианты действия гемотрансфузий зависят от многих причин, среди которых имеют весьма существенное значение: исходное состояние больного организма, доза, скорость переливания, методика трансфузии, температура переливаемой крови, качество и индивидуальный состав крови донора и другие моменты.

Этими факторами определяются характер реакции организма и окончательные результаты гемотрансфузии,

Они должны строго учитываться при определении показаний к различным методам переливания крови.

При рассмотрении механизма действия переливания крови необходимо учитывать все эти условия и методики гемотрансфузий. В качестве различных вариантов действия гемотрансфузий в хирургической клинике можно привести следующие примеры.

На основании наших наблюдений, при шоке без кровопотери введенная в вену или артерию кровь оказывает мощное тонизирующее действие на центральную нервную систему, причем эффект этого действия заметен даже при трансфузии небольших количеств крови (например, при капельной методике оно отмечается уже в первые минуты), что можно объяснить, в частности, воздействием переливаемой крови на интерорецепторы сосудистой системы. При этом не исключается возможность и непосредственного влияния на высшие нервные центры.

При массивной кровопотере эти рефлекторные и автоматические влияния гемотрансфузии также имеют место (Н. И. Блинов). Важно отметить, что в данных случаях отчетливо выступает перераспределение депонированной крови. Вскоре после введения большого количества крови улучшается деятельность анемизированного головного мозга, а затем наступает стимуляция всех функций организма.

И в первом, и во втором примерах отмечена преимущественная роль одного из факторов механизма переливания крови: в одном случае преобладание стимулирующего, в другом - заместительного действия. Однако, помимо этого, в обоих случаях, может быть в меньшей степени, проявляются и другие стороны влияния гемотрансфузии - гемостатический эффект, дезинтоксикация и др.

Таким образом, при анализе результата гемотрансфузии приходится в некоторой степени

схематично рассматривать отдельные явления и фиксировать внимание на ведущих в данном случае элементах действия переливаний, из которых составляется целостное представление об общем действии этого лечебного мероприятия.

Общепринято в виде рабочей схемы выделять следующие стороны действия гемотрансфузий: 1) заместительную (субституирующую), 2) «раздражающую» (стимулирующую), 3) кровоостанавливающую (гемостатическую), 4) обезвреживающую яды (дезинтоксикационную). Некоторые авторы отмечают также иммунобиологическое действие и другие моменты.

Анализ результатов гемотрансфузии при ее использовании в хирургической клинике показывает большое значение всех перечисленных сторон действия этого метода. Поэтому целесообразно изложить их в отдельности более подробно.

ДЕЙСТВИЕ ПЕРЕЛИВАНИЙ КРОВИ НА ОРГАНИЗМ БОЛЬНОГО. Заместительное действие трансфузий

В хирургической клинике весьма часто приходится применять гемотрансфузию для целей замещения при кровопотере, что особенно заметно проявляется при введении больших количеств крови (свыше 500 мл). Такие переливания крови принято называть заместительными.

Это действие складывается из ряда моментов. Прежде всего перелитая кровь пополняет общую массу циркулирующей крови больного. Кровь в отличие от всех кровозамещающих растворов сравнительно длительные сроки остается в русле крови больного и тем самым улучшает гемодинамику при крово- и плазмопотере. Этим обстоятельством в значительной степени объясняются факты быстрого повышения артериального давления в процессе и особенно после переливания крови. При этом отмечается устранение явлений цианоза, улучшение слышимости тонов сердца и других симптомов нарушения деятельности сердечно-сосудистой системы.

При длительном капельном переливании массивных доз крови повышение артериального давления происходит медленно и постепенно, что является более физиологичным по сравнению с быстрым повышением давления при ускоренном введении больших количеств крови.

Таким образом, скорость введения крови нужно отнести к важным моментам в механизме действия массивных трансфузий, что должно учитываться при каждом переливании. Необходимо подчеркнуть, что при угрожающей жизни кровопотере требуется внутривенное переливание 1-2-3 л крови за сравнительно небольшие сроки (1-2 часа).

Наоборот, при нервно-рефлекторном травматическом шоке необходимо вводить несколько меньшие дозы крови

(500-750 мл) и обязательно капельным путем, для того чтобы не вызвать быстрого подъема артериального давления, перегрузки сердечно-сосудистой системы, главным образом малого круга кровообращения, и последующего рецидива шока.

Последние данные В. Г. Чистякова и С. И. Стыскина, исследовавших артериальное и венозное давление во время крупных внутригрудных операций, свидетельствуют о том, что в ряде случаев в конце операции происходит повышение венозного давления, что может усугубляться массивным введением крови. Наши наблюдения говорят о том, что массивное введение крови в отдельных случаях может привести к перегрузке венозного сосудистого русла даже при капельном, постепенном переливании.

Аналогичные явления перегрузки венозного сосудистого русла и правой половины сердца после гемотрансфузии мы наблюдали еще у 2 больных. Сравнительная редкость подобных нарушений после гемотрансфузий может быть объяснена преимущественным использованием капельного метода в случаях массивных введений крови. При капельном переливании наблюдается компенсаторное вытеснение плазмы из русла крови в ткани. Это явление особенно выражено при тяжелой хронической анемии, где перелитая даже в больших дозах кровь не намного увеличивает общий объем циркулирующей крови. Показатель объема эритроцитов по гематокриту после введения 2-3 л крови повышался у этих больных вдвое. Наряду с этим, отмечалось увеличение -сухого -остатка цельной крови больного и несколько менее заметно уве-

Рис. 57. Больной И. Рак легкого. Переливание крови во время операции.

личивался сухой остаток сыворотки (наши исследования, 1937).

Последнее говорит о том, что плазма донорской крови в значительной своей части поступает из русла крови реципиента в ткани, а глобулярная масса остается в циркулирующей крови (Б. В. Петровский, Мариотт и др.). Такие же данные получены Б. Ю. Андриевским и И. А. Леонтьевым при переливании крови в эксперименте (1935); согласно их наблюдениям, при кровопотере переливание крови обогащает плазму белками на короткий срок. Через 15 минут количество белка постепенно уменьшается и становится даже ниже нормы.

Эшби переливал кровь 0(1) группы больным, имеющим группы А(II), В(III) и AB(IV). Затем он смешивал небольшое количество крови больного е сывороткой 0(1) группы, при этом происходила агглютинация эритроцитов больного [А(II), В(III) или AB(IV)].

При подсчете неагглютинированных эритроцитов донора группы 0(1) представлялась известная возможность

установить сроки длительности их жизни в сосудистой системе реципиента. В дальнейшем методика Эшби была признана несовершенной и в значительной мере изменена (В. Воронов, Г. М. Гуревич, Д. К. Рабинович и др.).

Определение жизнеспособности перелитых эритроцитов по Шиффу предусматривает использование сывороток анти-М и анти-N. Существуют также методики определения длительности жизни эритроцитов при переливании крови, основанные на исследовании способности крови поглощать кислород. Однако данные способы не могут показать, за счет чего увеличилась эта способность - за счет ли перелитых эритроцитов или за счет поступления крови из Депо, или стимуляции кроветворения реципиента как следствия трансфузии.

В настоящее время более точным способом признается методика определения количества перелитых эритроцитов путем использования изотопов. Эта методика широко применяется в Центральном институте переливания крови.

На основании многочисленных исследований жизнеспособности перелитых эритроцитов получены разнообразные данные. По Эшби, эритроциты перелитой крови продолжают циркулировать в русле реципиента в течение 113 суток, по Гольцу -42 дня, по Воронову - 60 дней и по данным Центрального ордена Ленина института гематологии и переливания крови - 30 дней.

Разнообразие этих сроков свидетельствует о неточности применявшихся ранее методов определения жизнеспособности перелитых эритроцитов.

Однако даже минимальные цифры (30 дней) вполне достаточны для того, чтобы сделать вывод о- стойком увеличении дыхательной поверхности крови в случаях применения гемотрансфузии.

Несомненно, что это улучшение газообмена после переливания крови прежде всего сказывается на улучшении деятельности центральных отделов нервной системы. Благотворное влияние переливаний крови на центральную нервную систему особенно заметно при остром и хроническом малокровии. Старый способ так называемой аутотрансфузии, не потерявший своей ценности и в настоящее время, состоит в бинтовании четырех конечностей эластическими бинтами в целях вытеснения из них крови и уменьшения общего круга кровообращения. С помощью этого способа в первые минуты тяжелой кровопотери удается бороться с опасными последствиями анемии мозга. Для улучшения кровоснабжения головного мозга при применении этого способа рекомендуется опускать голову больного ниже туловища (приподнимая ножной конец кровати).

Эти мероприятия, несомненно, следует признать эффективными. Их положительное действие подтверждает необходимость при кровопотере быстро доставить кровь сосудам центральной нервной системы - головному мозгу. В целях выяснения механизма действия трансфузии крови на центральную нервную систему производился ряд экспериментальных и клинических исследований (И. Р. Петров, В. А. Негевский и др.).

В нашей клинике в 1950 г. были произведены опыты по экспериментальному переливанию крови в общую сонную артерию по направлению к мозгу (Д. Франк).

Во всех случаях на артериограмме было видно, что кровь, смешанная с контрастным веществом, заполняет всю сосудистую сеть мозга. При этом в ряде случаев таким способом удавалось оживлять животных, спустя 3, 4 и 5 минут после остановки сокращений сердца, возникшей вследствие массивной кровопотери.

Наши клинические наблюдения во время Великой Отечественной войны 1941 -1945 гг. также показывают, что при агонии вследствие кровопотери переливание крови в периферический отдел обшей сонной артерии, разорванной снарядом и, лигированной в двух местах, быстро улучшает кровоснабжение головного мозга и сердца, и это приводит к восстановлению сердечной деятельности.

По данным Н. Н. Бурденко, переливание крови стимулирует деятельность вегетативной нервной системы, что можно объяснить улучшением кровоснабжения центральных ее отделов и улучшением газообмена.

Массивные переливания крови в большой степени повышают газообмен, что особенно заметно при исследовании больных в процессе капельных трансфузий. Менее выяснено заместительное действие перелитых лейкоцитов. В ряде работ отмечается роль лейкоцитов и иммунных антител, которые вводятся в организм больного при переливании крови и повышают его защитные свойства (Н. Б. Медведева, Д. А. Коган и др.). Однако следует отметить меньшую устойчивость перелитых лейкоцитов по сравнению с эритроцитами, особенно при переливании консервированной крови.

Большое значение в механизме заместительного действия гемотрансфузий принадлежит жидкой части крови

Роль перелитой плазмы особенно заметна при различных патологических процессах, ведущих к плазмопотере (шок, ожоги, анаэробная инфекция, последствия больших операций и т. д.), а также в случаях нарушения состава белков и других компонентов плазмы (кахексия, хроническая анемия и т. д.).

Использование для трансфузии обычной плазмы или сыворотки в смеси с глюкозой вызывает быстрое насыщение русла крови изохоллоидной, изоосмотической средой.

При введении концентрированных растворов сухой плазмы наблюдается повышение онкотического давления крови и устранение явлений гипопротеинемии (О. Д. Соколова-Пономарева и Е. С. Рысева), а также нормализация водного обмена (М. С. Дульцин).

Вместе с тем необходимо отметить более эффективное заместительное действие переливаний крови по сравнению с введением плазмы и сыворотки.

И. И. Зарецкий, провел интересное экспериментально- клиническое исследование по изучению водно-солевого обмена после переливания крови. Им было установлено, что в первые дни после гемотрансфузии имеет место некоторое сгущение крови, и хлоропения в результате задержки воды в тканях реципиента. В дальнейшем организм мобилизует свои запасы воды и солей и выводит их в циркуляцию в повышенном количестве, что и приводит к гидратации крови. Автору удалось установить важный факт активного участия эритроцитов реципиента в посттрансфузионных сдвигах:в содержании воды и хлора.

В первые дни после переливания крови наблюдается накопление воды и солей в эритроцитах, что является главным фактором посттрансфузионной гидремии. Проводя свод наблюдения на анемизированных больших, И. И. Зарецкий установил также, что под действием перелитой крови повышается проницаемость сосудистой мембраны реципиента.

Эксперименты на животных, проведенные в многочисленных работах, подтверждают мнение о весьма значительном удельном весе заместительного фактора в общем комплексе влияния гемотрансфузий на организм. Д. Н. Беленький отмечал, что собаки, у которых было произведено кровопускание 2/з объема крови, могли остаться живыми только после переливания крови. К аналогичным выводам приходит В. И. Шамов, Б. Ю. Андриевский, С. С. Брюхоненко и другие авторы.

В последней работе О. С. Глозмана и А. П. Касаткиной (1950) приведены эксперименты по замещению крови животного, «вымытой с помощью физиологического раствора, кровью донора». При этом животные оставались бодрыми и хорошо переносили операцию.

Исключительно яркие клинические наблюдения заместительного действия перелитой крови при резких степенях кровопотери имеют советские хирурги в мирное время и особенно во время Великой Отечественной войны. В. Н. Шамов пишет: «Истекший кровью, умирающий раненый, без пульса и без сознания, с еле заметным дыханием и не реагирующими зрачками, находящийся на краю гибели, после трансфузии оживает. Кожа его розовеет, сознание возвращается, появляется пульс, углубляется дыхание».

Работа всех систем организма не прекращается даже во время покоя и сна человека. Регенерация клеток, обмен веществ, мозговая деятельность при нормальных показателях продолжаются не зависимо от деятельности человека.

Наиболее активным органом в этом процессе является сердце. Его постоянная и бесперебойная работа обеспечивает кровообращение достаточное для поддержания всех клеток, органов, систем человека.

Мышечная работа, строение сердца, а также механизм движения крови по организму, ее распределение по различным отделам тела человека довольно обширная и сложная тема в медицине. Как правило подобные статьи переполнены терминологией не понятной человеку без медицинского образования.

Данная редакция описывает круги кровообращения кратко и понятно, что позволит множеству читателей пополнить свои знания в вопросах здоровья.

Обратите внимание. Данная тема интересна не просто для общего развития, знания принципов кровообращения, механизмов работы сердца могут пригодиться при необходимости оказания первой помощи при кровотечениях, травмах, сердечных приступах и прочих инцидентах до приезда медиков.

Многие из нас недооценивают значимость, сложность, высоко точность, координированность сердца сосудов, а также органов и тканей человека. День и ночь без остановки все элементы системы тем или иным образом сообщаются между собой обеспечивая тело человека питанием и кислородом. Нарушить баланс кровообращения может целый ряд факторов, после чего по цепной реакции будут затронуты все зоны организма, находящиеся под прямой и косвенной зависимостью от него.

Изучение системы кровообращения невозможно без элементарных знаний строения сердца и анатомии человека. Учитывая сложность терминологии, обширность темы при первом знакомстве с ней для многих становится открытием что кровообращение человека проходит целых два круга.

Полноценное кровеносное сообщение тела основывается на синхронизации работы мышечных тканей сердца, разности создаваемых его работой давлений крови, а также эластичности, проходимости артерий и вен. Патологические проявления, влияющие на каждый из вышеупомянутых факторов, ухудшают распределение крови по организму.

Именно ее циркуляция отвечает за доставку кислорода, полезных веществ в органы, а также выведение вредного углекислого газа, продуктов обмена вредных для их функционирования.

Сердце является мышечным органом человека, разделенным на четыре части перегородками, образующими полости. Посредствам сокращения сердечной мышцы внутри этих полостей создается разное кровяное давление обеспечивающие работу клапанов, предупреждающих случайный заброс крови назад в вену, а также отток крови из артерии в полость желудочка.

В верхней части сердца находятся два предсердия названные с учетом расположения:

  1. Правое предсердие . Темная кровь поступает из верхней полой вены после чего из-за сокращения мышечной ткани она под давление выплескивается внутрь правого желудочка. Сокращение начинается с того места где вена соединяется с предсердием, что обеспечивает защиту от обратного попадания крови в вену.
  2. Левое предсердие . Заполнение полости кровью происходит через легочные вены. По аналогии с вышеописанным механизмом работы миокарда, выдавливаемая сокращением мышцы предсердия кровь поступает в желудочек.

Клапан между предсердием и желудочком под давлением крови раскрывается и дает ей свободно пройти внутрь полости, после чего закрывается, ограничивая ей возможность вернуться обратно.

В нижней части сердца расположены его желудочки:

  1. Правый желудочек. Выталкиваемая из предсердия кровь попадает в желудочек. Далее происходит его сокращение, закрытие трех створчатого клапана и открытие под давлением крови клапана легочной артерии.
  2. Левый желудочек . Мышечная ткань этого желудочка существенно толще правой, соответственно при сокращении может создать более сильное давление. Это необходимо для обеспечения силы выброса крови в большой цикл кровообращения. Как и при первом случае сила давления закрывает клапан предсердия (митральный) и открывает аортальный.

Важно. Полноценная работа сердца зависит от синхронности, а также ритмичности сокращений. Разделение сердца на четыре отдельные полости входы и выходы которых отгорожены клапанами обеспечивает перемещение крови из вен в артерии без риска смешивания. Аномалии развития строения сердца, его составляющих нарушают механику работы сердца, следовательно, и само кровообращение.

Строение кровеносной системы человеческого организма

Помимо достаточно сложного строения сердца, свои особенности имеет строение самой кровеносной системы. Кровь по телу распределяется по системе полых сообщающихся между собой сосудов различных размерами, структурой стенок, назначением.

Структура сосудистой системы человеческого организма включает следующие виды сосудов:

  1. Артерии. Не содержащие в структуре гладких мышц сосуды, обладают прочной оболочкой с эластичными свойствами. При выбросе дополнительной крови из сердца стенки артерии расширяются что позволяет контролировать давление крови в системе. Вовремя паузы стенки растягиваются, сужаются уменьшая просвет внутренней части. Это не дает давлению падать до критических норм. Функция артерий заключается в переносе крови от сердца к органам, тканям тела человека.
  2. Вены. Кровоток венозной крови обеспечивается ее сокращениями, давлением мышц скелета на ее оболочку, и разницей давления у легочной полой вены при работе легких. Особенностью функционирования является возвращение отработанной крови к сердцу, для дальнейшего газообмена.
  3. Капилляры. Структура стенки самых тонких сосудов состоит всего из одного слоя клеток. Это делает их уязвимыми, однако одновременно с этим высоко проницаемыми, что предопределяет их функцию. Обмен между клетками тканей и плазмой который они обеспечивают, насыщает организм кислородом, питанием, очищает от продуктов метаболизма посредствам фильтрации в сети капилляров соответствующих органов.

Каждый вид сосудов образует свою так называемую систему рассмотреть детальнее которую можно на представленной схеме.

Капилляры являются тончайшими из сосудов, они испещряют все части тела настолько густо что образовывают так называемые сети.

Давление в сосудах создаваемое мышечной тканью желудочков варьируется, это зависит от их диаметра и удаленности от сердца.

Виды кругов кровообращения, функции, характеристика

Кровеносная система делится на две замкнутые сообщающиеся благодаря сердцу, однако выполняющие разные задачи системы. Речь идет о наличии двух кругов кровообращения. Кругами специалисты в медицине их называют из-за замкнутости системы, выделяя два основных их вида: большой и малый.

Эти круги имеют кардинальные различия как в строении, размерах, количестве задействованных сосудов, так и функциональности. Подробнее узнать их основные функциональные отличия поможет приведенная ниже таблица.

Таблица №1. Функциональные характеристики, других особенностей большого и малого кругов кровообращения:

Как видно из таблицы круги выполняют совершенно разные функции, но имеют одинаковую значимость для кровообращения. Пока кровь совершает цикл по большому кругу один раз, внутри малого совершается 5 циклов за тот же промежуток времени.

В медицинской терминологии иногда встречается также такой термин как дополнительные круги кровообращения:

  • сердечный – проходит от коронарных артерий аорты, возвращается по венам к правому предсердию;
  • плацентарный – циркулирует у плода, развивающегося в матке;
  • виллизиев – расположен у основания мозга человека, выступает в качестве резервного кровоснабжения при закупорке сосудов.

Так или иначе все дополнительный круги являются частью большого или находятся в прямой зависимости от него.

Важно. Оба круга кровообращения поддерживают баланс в работе сердечно-сосудистой системы. Нарушение кровообращения из-за возникновения различных патологий в одном из них ведет к неминуемому влиянию на другой.

Большой круг

Из самого названия можно понять, что данный круг отличается размерами, а соответственно и количеством задействованных сосудов. Все круги начинаются с сокращения соответствующего желудочка и заканчиваются возвращением крови в предсердие.

Большой круг берет начало при сокращении наиболее сильного левого желудочка, выталкивании крови в аорту. Проходя по ее дуге, грудному, брюшному сегменту происходит ее перераспределение по сети сосудов через артериолы и капилляры к соответствующим органам, частям тела.

Именно по средствам капилляров происходит отдача кислорода, питательных веществ, гормонов. При оттоке в венулы она забирает с собой углекислый газ, вредные вещества, образованные метаболическими процессами в организме.

Далее через две наиболее крупные вены (полые верхняя и нижняя) кровь возвращается в правое предсердие замыкая цикл. Рассмотреть наглядно схему циркулировали крови по большому кругу можно на рисунке, представленном ниже.

Как видно на схеме отток венозной крови от непарных органов человеческого организма происходит не напрямую к нижней полой вене, а в обход. Насытив кислородом и питанием органы брюшной полости, селезенку она устремляется в печень, где посредствам капилляров происходит ее очищение. Только после этого профильтрованная кровь поступает в нижнюю полую вену.

Фильтрующими свойствами также обладают почки, двойная капиллярная сеть позволяет венозной крови напрямую попадать в полую вену.

Огромное значение, не смотря на достаточно короткий цикл имеет коронарное кровообращение. Коронарные артерии, выходящие из аорты, ветвятся на более мелкие и огибают сердце.

Заходя в его мышечные ткани, они делятся на капилляры, питающие сердце, а отток крови обеспечивают три сердечные вены: малая, средняя, большая, а также тебезиевые и передние сердечные.

Важно. Постоянная работа клеток тканей сердца требует большого количества энергии. Через коронарный круг проходит около 20% количества всей вытолкнутой из органа, обогащенной кислородом и питательными элементами крови в организм.

Малый круг

Строение малого круга включает гораздо меньше задействованных сосудов и органов. В медицинской литературе его чаще называют легочным и не спроста. Именно этот орган является главными в данной цепочке.

Осуществляющийся по средствам кровеносных капилляров, оплетающих легочные пузырьки, газообмен имеет важнейшее значения для организма. Именно малый круг в последствии дает возможность большому насыщать обогащенной кровью все тело человека.

Кровоток по малому кругу осуществляется в следующем порядке:

  1. Сокращением правого предсердия венозная кровь, потемневшая из-за избытка углекислого газа в ней, выталкивается внутрь полости правого желудочка сердца. Предсердно-желудочная перегородка этот момент закрыта, для недопущения возврата в него крови.
  2. Под давлением мышечной ткани желудочка она выталкивается в легочный ствол, при этом трехстворчатый клапан разделяющий полость с предсердием закрыт.
  3. После попадания крови в легочную артерию его клапан закрывается, что исключает возможность ее возврата к полости желудочка.
  4. Проходя по крупной артерии кровь поступает к участку ее разветвления на капилляры, где и происходит удаление углекислого газа, а также насыщение кислородом.
  5. Алая, очищенная, обогащенная кровь посредствам легочных вен заканчивает свой цикл у левого предсердия.

Как можно заметить при сравнении двух схем кровотока в большом кругу по венам к сердцу течет темная венозная кровь, а в малом алая очищенная и наоборот. Артерии легочного круга заполнены венозной кровью, в то время как по артериям большого идет обогащенная алая.

Нарушения кровообращения

За 24 часа сердце перекачивает по сосудам человека более 7000 л. крови. Однако эта цифра актуальна только при стабильной работе всей сердечно-сосудистой системы.

Отменным здоровьем могут похвастаться лишь единицы. При условиях реальной жизни из-за множества факторов практически у 60% населения наблюдаются проблемы со здоровьем, сердечно сосудистая система не является исключением.

Ее работа характеризуется следующими показателями:

  • эффективностью работы сердца;
  • тонусом сосудов;
  • состояние, свойства, масса крови.

Наличие отклонений даже одного из показателей приводит к нарушению кровотока двух кругов кровообращения, не говоря уже о обнаружении целого их комплекса. Специалисты области кардиологии различают общие и местные нарушения, затрудняющие движение крови по кругам кровообращения, таблица с их перечнем представлена ниже.

Таблица № 2. Перечень нарушений работы кровеносной системы:

Вышеописанные нарушения разделяют также по видам зависимо от системы, кровообращения которую оно затрагивает:

  1. Нарушения работы центрального кровообращения. Эта система включает сердце, аорту, полые вены, легочный ствол и вены. Патологии данных элементов системы влияют на остальные ее составляющие, что грозит недостачей кислорода в тканях, интоксикацией организма.
  2. Нарушение периферического кровообращения. Подразумевает патологию микроциркуляции, проявляющуюся проблемами с кровенаполнением (полно/малокровие артериальное, венозное), реологических характеристик крови (тромбоз, стаз, эмболия, ДВС), проницаемостью сосудов (кровопотеря, плазморрагия).

Основную группу риска проявления подобных нарушений в первую очередь составляют генетически предрасположенные люди. Если родители имеют проблемы с кровообращением или работой сердца всегда есть шанс передать подобный диагноз по наследству.

Однако и без генетики множество людей подвергают свой организм опасности развития патологий как в большом, так и в малом кругу кровообращения:

  • вредные привычки;
  • сидячий образ жизни;
  • вредные условия труда;
  • постоянные стрессы;
  • преобладание в рационе вредной пищи;
  • бесконтрольный прием лекарственных препаратов.

Все это постепенно влияет не только на состояние сердца, сосудов, крови, но и на весь организм. Результатом чего становится снижение защитных функций организма, иммунитет ослабевает, что дает возможности для развития различных заболеваний.

Важно. Изменение структуры стенок сосудов, мышечной ткани сердца, прочие патологии могут быть вызваны инфекционными заболеваниями, некоторые из них передаются половым путем.

Наиболее распространенными заболеваниями сердечно сосудистой системы мировая медицинская практика считает атеросклероз, гипертоническую болезнь, ишемию.

Атеросклероз как правило имеет хроническую форму и довольно быстро прогрессирует. Нарушение белково-жирового обмена приводит к структурным изменениям, преимущественно крупных и средних артерий. Разрастание соединительной ткани провоцируют липидно-белковые отложения на стенках сосудов. Атеросклерозная бляшка закрывает просвет артерии препятствуя потоку крови.

Гипертония опасна постоянной нагрузкой на сосуды, сопровождающейся ее кислородным голоданием. В следствие этого в стенках сосуда происходят дистрофические изменения, повышается проницаемость их стенок. Плазма просачивается сквозь структурно измененную стенку образовывая отек.

Коронарная болезнь сердца (ишемическая) обусловлена нарушением сердечного круга кровообращения. Возникает при дефиците кислорода достаточного для полноценной работы миокарда или полной остановке кровотока. Характеризуется дистрофией сердечной мышцы.

Профилактика проблем с кровообращением, лечение

Наилучшим вариантом предупреждения заболеваний, сохранения полноценного кровообращения большого и малого круга является профилактика. Соблюдение простых, но достаточно эффективных правил поможет человеку не только укрепить сердце и сосуды, но также продлит молодость организма.

Основные шаги для профилактики сердечно сосудистых заболеваний:

  • отказ от курения, алкоголя;
  • соблюдение сбалансированного питания;
  • занятие спортом, закаливание;
  • соблюдение режима труда и отдыха;
  • здоровый сон;
  • регулярные профилактические осмотры.

Ежегодный осмотр у медицинского специалиста поможет с ранним выявлением признаков нарушения циркуляции крови. В случае обнаружения заболевания начальной стадии развития специалисты рекомендуют медикаментозное лечение, препаратами соответствующих групп. Соблюдение инструкций врача увеличивает шансы на положительный результат.

Важно. Довольно часто заболевания протекают бессимптомно долгое время, что дает возможность ему возможность прогрессировать. При таких случаях может понадобиться хирургическое вмешательство.

Довольно часто для профилактики, а также лечения описанных редакцией патологий пациенты применяют народные способы лечения и рецепты. Подобные методы требуют предварительной консультации с лечащим врачом. Исходя из истории болезни пациента, индивидуальных особенностях его состояния специалист даст подробные рекомендации.

В человеческом организме кровеносная система устроена так, чтобы полностью отвечать его внутренним потребностям. Немаловажную роль в продвижении крови играет наличие замкнутой системы, в которой разделены артериальный и венозный кровяные потоки. И осуществляется это с помощью наличия кругов кровообращения.

Историческая справка

В прошлом, когда под рукой у ученых еще не было информативных приборов, способных изучать физиологические процессы на живом организме, величайшие деятели науки вынуждены были заниматься поиском анатомических особенностей у трупов. Естественно, что у умершего человека сердце не сокращается, поэтому некоторые нюансы приходилось домысливать самостоятельно, а иногда и попросту фантазировать. Так, еще во втором веке нашей эры Клавдий Гален, обучающийся по трудам самого Гиппократа, предполагал, что артерии содержат в своем просвете воздух вместо крови. На протяжении дальнейших столетий было выполнено немало попыток объединить и связать воедино имеющиеся анатомические данные с позиции физиологии. Все ученые знали и понимали, как устроена система кровообращения, но вот как это работает?

Колоссальный вклад в систематизацию данных по работе сердца внесли ученые Мигель Сервет и Уильям Гарвей в 16-м веке. Гарвей, ученый, впервые описавший большой и малый круги кровообращения, в 1616 году определил наличие двух кругов, но вот как связаны между собой артериальное и венозное русло, он объяснить в своих трудах не мог. И лишь впоследствии, в 17-м веке, Марчелло Мальпиги, один из первых начавший использовать микроскоп в своей практике, открыл и описал наличие мельчайших, невидимых невооруженным глазом капилляров, которые служат связующим звеном в кругах кровообращения.

Филогенез, или эволюция кругов кровообращения

В связи с тем, что по мере эволюции животные класса позвоночных становились все более прогрессивными в анатомо-физиологическом отношении, им требовалось сложное устройство и сердечно-сосудистой системы. Так, для более быстрого движения жидкой внутренней среды в организме позвоночного животного появилась необходимость замкнутой системы циркуляции крови. По сравнению с иными классами животного царства (например, с членистоногими или с червями), у хордовых появляются зачатки замкнутой сосудистой системы. И если у ланцетника, к примеру, отсутствует сердце, но существует брюшная и спинная аорта, то у рыб, амфибий (земноводных), рептилий (пресмыкающихся) появляется двух- и трехкамерное сердце соответственно, а у птиц и млекопитающих – четырехкамерное сердце, особенностью которого является средоточие в нем двух кругов кровообращения, не смешивающихся между собой.

Таким образом, наличие у птиц, млекопитающих и человека, в частности, двух разделенных кругов кровообращения – это не что иное, как эволюция кровеносной системы, необходимая для лучшего приспособления к условиям окружающей среды.

Анатомические особенности кругов кровообращения

Круги кровообращения – это совокупность кровеносных сосудов, представляющая собой замкнутую систему для поступления во внутренние органы кислорода и питательных веществ посредством газообмена и обмена нутриентами, а также для выведения из клеток двуокиси углерода и иных продуктов метаболизма. Для организма человека характерны два круга – системный, или большой круг, а также легочной, называемый также малым кругом.

Видео: круги кровообращения, мини-лекция и анимация


Большой круг кровообращения

Основной функцией большого круга является обеспечение газообмена во всех внутренних органах, кроме легких. Он начинается в полости левого желудочка; представлен аортой и ее ответвлениями, артериальным руслом печени, почек, головного мозга, скелетной мускулатуры и других органов. Далее данный круг продолжается капиллярной сетью и венозным руслом перечисленных органов; и посредством впадения полой вены в полость правого предсердия заканчивается в последнем.

Итак, как уже сказано, начало большого круга – это полость левого желудочка. Сюда направляется артериальный кровяной поток, содержащий в себе большую часть кислорода, нежели двуокиси углерода. Этот поток в левый желудочек попадает непосредственно из кровеносной системы легких, то есть из малого круга. Артериальный поток из левого желудочка посредством аортального клапана проталкивается в крупнейший магистральный сосуд – в аорту. Аорту образно можно сравнить со своеобразным деревом, которое имеет множество ответвлений, потому что от нее отходят артерии ко внутренним органам (к печени, почкам, желудочно-кишечному тракту, к головному мозгу – через систему сонных артерий, к скелетным мышцам, к подкожно-жировой клетчатке и др). Органные артерии, также имеющие многочисленные разветвления и носящие соответственные анатомии названия, несут кислород в каждый орган.

В тканях внутренних органов артериальные сосуды подразделяются на сосуды все меньшего и меньшего диаметра, и в результате формируется капиллярная сеть. Капилляры – это наимельчайшие сосуды, практически не имеющие среднего мышечного слоя, а представленные внутренней оболочкой – интимой, выстланной эндотелиальными клетками. Просветы между этими клетками на микроскопическом уровне настолько велики по сравнению с другими сосудами, что позволяют беспрепятственно проникать белкам, газам и даже форменным элементам в межклеточную жидкость окружающих тканей. Таким образом, между капилляром с артериальной кровью и жидкой межклеточной средой в том или ином органе происходит интенсивный газообмен и обмен других веществ. Кислород проникает из капилляра, а углекислота, как продукт метаболизма клеток – в капилляр. Осуществляется клеточный этап дыхания.

После того, как в ткани перешло большее количество кислорода, а из тканей была удалена вся углекислота, кровь становится венозной. Весь газообмен осуществляется с каждым новым притоком крови, и за тот промежуток времени, пока она движется по капилляру в сторону венулы – сосудика, собирающего венозную кровь. То есть с каждым сердечным циклом в том или ином участке организма осуществляется поступление кислорода в ткани и удаление из них двуокиси углерода.

Указанные венулы объединяются в вены покрупнее, и формируется венозное русло. Вены, аналогично артериям, носят те названия, в каком органе они располагаются (почечные, мозговые и др). Из крупных венозных стволов формируются притоки верхней и нижней полой вены, а последние затем впадают в правое предсердие.

Особенности кровотока в органах большого круга

Некоторые из внутренних органов имеют свои особенности. Так, например, в печени существует не только печеночная вена, «относящая» венозный поток от нее, но и воротная, которая наоборот, приносит кровь в печеночную ткань, где выполняется очищение крови, и только потом кровь собирается в притоки печеночной вены, чтобы попасть к большому кругу. Воротная вена приносит кровь от желудка и кишечника, поэтому все, что человек съел или выпил, должно пройти своеобразную «очистку» в печени.

Кроме печени, определенные нюансы существуют и в других органах, например, в тканях гипофиза и почек. Так, в гипофизе отмечается наличие так называемой «чудесной» капиллярной сети, потому что артерии, приносящие кровь в гипофиз из гипоталамуса, разделяются на капилляры, которые затем собираются в венулы. Венулы, после того, как кровь с молекулами релизинг-гормонов собрана, вновь разделяются на капилляры, а затем уже формируются вены, относящие кровь от гипофиза. В почках дважды на капилляры разделяется артериальная сеть, что связано с процессами выделения и обратного всасывания в клетках почек – в нефронах.

Малый круг кровообращения

Его функцией является осуществление газообменных процессов в легочной ткани с целью насыщения «отработанной» венозной крови кислородными молекулами. Он начинается в полости правого желудочка, куда из право-предсердной камеры (из «конечной точки» большого круга) поступает венозный кровяной поток с крайне незначительным количеством кислорода и с большим содержанием углекислоты. Эта кровь посредством клапана легочной артерии продвигается в один из крупных сосудов, называемый легочным стволом. Далее венозный поток двигается по артериальному руслу в легочной ткани, которое также распадается на сеть из капилляров. По аналогии с капиллярами в других тканях, в них осуществляется газообмен, вот только в просвет капилляра поступают молекулы кислорода, а в альвеолоциты (клетки альвеол) проникает углекислота. В альвеолы при каждом акте дыхания поступает воздух из окружающей среды, из которого кислород через клеточные мембраны проникает в плазму крови. С выдыхаемым воздухом при выдохе поступившая в альвеолы углекислота выводится наружу.

После насыщения молекулами O 2 кровь приобретает свойства артериальной, протекает по венулам и в конечном итоге добирается до легочных вен. Последние в составе четырех или пяти штук открываются в полость левого предсердия. В результате, через правую половину сердца протекает венозный кровяной поток, а через левую половину – артериальный; и в норме эти потоки смешиваться не должны.

В ткани легких имеется двойная сеть капилляров. При помощи первой осуществляются газообменные процессы с целью обогащения венозного потока молекулами кислорода (взаимосвязь непосредственно с малым кругом), а во второй осуществляется питание самой легочной ткани кислородом и нутриентами (взаимосвязь с большим кругом).


Дополнительные круги кровообращения

Данными понятиями принято выделять кровоснабжение отдельных органов. Так, например, к сердцу, которое больше других нуждается в кислороде, артериальный приток осуществляется из ответвлений аорты в самом ее начале, которые получили название правой и левой коронарных (венечных) артерий. В капиллярах миокарда происходит интенсивный газообмен, а венозный отток осуществляется в коронарные вены. Последние собираются в коронарный синус, который открывается прямо в право-предсердную камеру. Таким путем осуществляется сердечный, или коронарный круг кровообращения.

венечный (коронарный) круг кровообращения в сердце

Виллизиев круг представляет собой замкнутую артериальную сеть из мозговых артерий. Мозговой круг обеспечивает дополнительное кровоснабжение мозга при нарушении мозгового кровотока по другим артериям. Это защищает столь важный орган от недостатка кислорода, или гипоксии. Мозговой круг кровообращения представлен начальным сегментом передней мозговой артерии, начальным сегментом задней мозговой артерии, передними и задними соединительными артериями, внутренними сонными артериями.

виллизиев круг в мозге (классический вариант строения)

Плацентарный круг кровообращения функционирует только во время вынашивания плода женщиной и осуществляет функцию «дыхания» у ребенка. Плацента формируется, начиная с 3-6 недели беременности, и начинает функционировать в полную силу с 12-й недели. В связи с тем, что легкие плода не работают, поступление кислорода в его кровь осуществляется посредством потока артериальной крови в пупочную вену ребенка.

кровообращение плода до рождения

Таким образом, всю кровеносную систему человека можно условно разделить на отдельные взаимосвязанные участки, выполняющие свои функции. Правильное функционирование таких участков, или кругов кровообращения, является залогом здоровой работы сердца, сосудов и всего организма в целом.

Кровь - жидкая ткань, циркулирующая в кровеносной системе человека и представляющая собой непрозрачную красную жидкость, состоящую из бледно-желтой плазмы и взвешенных в ней клеток - красных кровяных телец (эритроцитов), белых кровяных телец (лейкоцитов) и красных пластинок (тромбоцитов). На долю взвешенных клеток (форменных элементов) приходится 42–46 % общего объема крови.

Основная функция крови - транспорт различных веществ внутри организма. Она переносит дыхательные газы (кислород и углекислый газ) как в физически растворенном, так и в химически связанном виде. Этой способ­ностью кровь обладает благодаря гемоглобину - белку, содержащемуся в эритроцитах. Кроме того, кровь доставляет питательные вещества от орга­нов, где они всасываются или хранятся, к месту их потребления; образую­щиеся здесь метаболиты (продукты обмена) транспортируются к выдели­тельным органам или к тем структурам, где может происходить их дальней­шее использование. Целенаправленно, к органам-мишеням, кровью перено­сятся также гормоны, витамины и ферменты. Благодаря высокой теплоемко­сти своей главной составной части - воды (в 1 л плазмы содержится 900–910 г воды), кровь обеспечивает распределение тепла, образующегося в процессе метаболизма, и его выделение во внешнюю среду через легкие, дыхательные пути и поверхность кожи.

Доля крови у взрослого человека составляет примерно 6–8 % общей массы тела, что соответствует 4–6 л. Объем крови у человека может претер­певать значительные и длительные отклонения в зависимости от степени тренированности, климатических и гормональных факторов. Так, у некото­рых спортсменов объем крови в результате тренировок может превышать 7 л. А после длительного периода постельного режима он может становиться ни­же нормы. Кратковременные изменения объема крови наблюдаются при пе­реходе из горизонтального в вертикальное положение тела и при мышечной нагрузке.

Кровь может выполнять свои функции, только находясь в постоянном движении. Это движение производится по системе сосудов (эластичных тру­бочек) и обеспечивается сердцем. Благодаря сосудистой системе организма, крови доступны все уголки тела человека, каждая клетка. Сердце и крове­носные сосуды (артерии, капилляры, вены) образуют сердечно-сосудистую систему (рис. 2.1).

Движение крови по сосудам легких от правого сердца к левому называ­ется легочным кровообращением (малый круг). Начинается он с правого же­лудочка, выбрасывающего кровь в легочный ствол. Затем кровь поступает в сосудистую систему легких, имеющую в общих чертах то же строение, что и большой круг кровообращения. Далее по четырем крупным легочным ве­нам она поступает к левому предсердию (рис. 2.2).

Следует отметить, что артерии и вены различаются не по составу дви­жущейся в них крови, а по направлению движения. Так, по венам кровь по­ступает к сердцу, а по артериям оттекает от него. В системном кровообращении оксигенерированная (обогащенная кислородом) кровь течет по артериям, а в легочном - по венам. Поэтому, когда кровь, насыщенную кислородом, на­зывают артериальной, имеют в виду лишь системное кровообращение.

Сердце является полым мышечным органом, разделенным на две части - так называемое «левое» и «правое» сердце, каждое из которых включает предсердие и желудочек. Частично лишенная кислорода кровь от органов и тканей организма поступает к правому сердцу, выталкивающему ее к легким. В легких кровь насыщается кислородом, частично лишаясь углеки­слого газа, затем возвращается к левому сердцу и вновь поступает к органам.

Нагнетательная функция сердца основана на чередовании сокращения (систолы) и расслабления (диастолы) желудочков, что возможно благодаря физиологическим особенностям миокарда (мышечной ткани сердца, состав­ляющей основную часть его массы) - автоматии, возбудимости, проводимо­сти, сократимости и рефрактерности. Во время диастолы желудочки запол­няются кровью, а во время систолы они выбрасывают ее в крупные артерии (аорту и легочный ствол). У выхода из желудочков расположены клапаны, препятствующие обратному поступлению крови из артерий в сердце. Перед тем как заполнить желудочки, кровь притекает по крупным венам (полым и легочным) в предсердия.

Рис. 2.1. Сердечно-сосудистая система человека

Систола предсердий предшествует систоле желу­дочков; таким образом, предсердия служат как бы вспомогательными насо­сами, способствующими заполнению желудочков.

Рис. 2.2. Строение сердца, малый (легочный) и большой круги кровеобращения

Кровоснабжение всех органов (кроме легких) и отток крови от них носит название системного кровообращения (большой круг). Начинается он с левого желудочка, выбрасывающего во время систолы кровь в аорту. От аорты отходят многочисленные артерии, по которым кровоток распределяет­ся на несколько параллельных региональных сосудистых сетей, снабжающих кровью отдельные органы и ткани - сердце, головной мозг, печень, почки, мышцы, кожу и т. д. Артерии делятся, и по мере роста их числа уменьшается диаметр каждой из них. В результате разветвления мельчайших артерий (артериол) образуется капиллярная сеть - густое переплетение мелких со­судов с очень тонкими стенками. Именно здесь происходит основной дву­сторонний обмен различными веществами между кровью и клетками. При слиянии капилляров образуются венулы, которые далее объединяются в вены. В конечном счете, к правому предсердию подходят только две вены - верх­няя полая и нижняя полая.

Разумеется, фактически оба круга кровообращения составляют единое кровеносное русло, в двух участках которого (правом и левом сердце) крови сообщается кинетическая энергия. Хотя между ними существует принципи­альное функциональное различие. Объем крови, выбрасываемый в большой круг, должен быть распределен по всем органам и тканям, потребность ко­торых в кровоснабжении различна и зависит от их состояния и деятельно­сти. Любые изменения мгновенно регистрируются центральной нервной системой (ЦНС), и кровоснабжение органов регулируется целым рядом управляющих механизмов. Что касается сосудов легких, через которые про­ходит постоянное количество крови, то они предъявляют к правому сердцу относительно постоянные требования и выполняют в основном функции га­зообмена и теплоотдачи. Поэтому система регуляции легочного кровотока менее сложна.

У взрослого человека примерно 84 % всей крови содержится в большом круге кровообращения, 9 % - в малом круге и оставшиеся 7 % - непосредст­венно в сердце. Наибольший объем крови содержится в венах (примерно 64 % общего объема крови в организме), т. е. вены играют роль резервуаров крови. В состоянии покоя кровь циркулирует лишь примерно в 25–35 % всех капил­ляров. Основным кроветворным органом является костный мозг.

Требования, предъявляемые организмом к системе кровообращения, существенно варьируют, поэтому ее деятельность изменяется в широких пределах. Так, в покое у взрослого человека в сосудистую систему при каж­дом сокращении сердца выбрасывается 60–70 мл крови (систолический объ­ем), что соответствует 4–5 л минутного объема сердца (количество крови, выбрасываемое желудочком за 1 мин). А при тяжелой физической нагрузке минутный объем возрастает до 35 л и выше, при этом систолический объем крови может превышать 170 мл, а систолическое артериальное давление дос­тигает 200–250 мм рт. ст.

Кроме кровеносных сосудов в организме есть еще один тип сосудов - лимфатические.

Лимфа - бесцветная жидкость, образующаяся из плазмы крови путем ее фильтрации в межтканевые пространства и оттуда в лимфатическую сиcтему. Лимфа содержит воду, белки, жиры и продукты обмена. Таким обра­зом, лимфатическая система образует дополнительную дренажную систему, по которой тканевая жидкость оттекает в кровеносное русло. Все ткани, за исключением поверхностных слоев кожи, ЦНС и костной ткани, пронизаны множеством лимфатических капилляров. Эти капилляры в отличие от крове­носных с одного конца замкнуты. Лимфатические капилляры собираются в более крупные лимфатические сосуды, которые в нескольких местах впа­дают в венозное русло. Поэтому лимфатическая система является частью сердечно-сосудистой.