Открытие и разработка лекарственных препаратов. Основные этапы создания лекарственных препаратов. Общая рецептура –

ИСТОЧНИКИ ПОЛУЧЕНИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Существуют различные источники, из которых современными технологичес­кими методами можно получить лекарственные вещества:

· Минеральные соединения (магния сульфат, натрия сульфат).

· Ткани и органы животных (инсулин, препараты гормонов щитовидной же­лезы, ферментные препараты, препараты, регулирующие пищеварение).

· Растения (сердечные гликозиды, морфин, резерпин).

· Микроорганизмы (антибиотики: пенициллины, цефалоспорины, макролиды и др.).

· С 80-х годов XX века разработана техноло­гия получения лекарственных средств методом генной инженерии (человеческие инсулины).

· Химический синтез (сульфаниламиды, парацетамол, кислота вальпроевая, новокаин, кислота ацетилсалициловая). С середины XIX века лекарственные ве­щества активно стали получать химическим путем. Большинство современных лекарственных веществ являются продуктами химического синтеза.

Разработка новых лекарственных средств осуществляется совместными уси­лиями многих отраслей науки, при этом основная роль принадлежит специа­листам в области химии, фармакологии, фармации.

Создание нового лекарст­венного средства представляет собой ряд последовательных этапов, каждый из которых должен отвечать определенным положениям и стандартам, утвержден­ным государственными учреждениями - Фармакопейным Комитетом, Фармако­логическим Комитетом, Управлением МЗ РБ по внедрению новых лекарствен­ных средств.

Процесс создания новых лекарственных средств выполняется в соответствии с международными стандартами - GLP (Good Laboratory Practice - Качествен­ная лабораторная практика), GMP (Good Manufacturing Practice - Качественная производственная практика) и GCP (Good Clinical Practice - Качественная кли­ническая практика).

Знаком соответствия разрабатываемого нового лекарственного средства этим стандартам является официальное разрешение процесса их дальнейшего иссле­дования - IND (Investigation New Drug).

ПЕРВЫЙ ЭТАП - получение новой активной субстанции (действующего вещества или комплек­са веществ) идет по трем основным направлениям:

1. ХИМИЧЕСКИЙ СИНТЕЗ

· Эмпирический путь: скрининг, случайные находки;

· Направленный синтез: воспроизведение структуры эндогенных веществ, хи­мическая модификация известных молекул;

· Целенаправленный синтез (рациональный дизайн химического соединения), основанный на понимании зависимости «химическая структура - фармакологи­ческое действие».

Эмпирический путь (от греч. empeiria - опыт) создания лекарственных веществ основан на методе «проб и ошибок», при котором фармакологи берут ряд хими­ческих соединений и определяют с помощью набора биологических тестов (на молекулярном, клеточном, органном уровнях и на целом животном) наличие или отсутствие у них определенной фармакологической активности. Так, наличие противомикробной активности определяют на микроорганизмах. Затем среди исследуемых химических соедине­ний выбирают наиболее активные и сравнивают степень их фармакологической активности и токсичности с существующими лекарственными средствами, кото­рые используются в качестве стандарта. Такой путь отбора активных веществ получил название лекарственного скрининга (от англ. screen - отсеивать, сорти­ровать). Ряд препаратов был внедрен в медицинскую практику в результате слу­чайных находок.



Направленный синтез состоит в получении соедине­ний с определенным видом фармакологической активности. Первый этап такого синтеза заключается в воспроизведении веществ, образующихся в живых организмах. Так были синтезированы адреналин, норадреналин, ряд гормонов, простагландины, витамины. Затем химическая модификация известных молекул позволяет создать лекарствен­ные вещества, обладающие более выраженным фармакологическим эффектом и меньшим побочным действием.

Целенаправленный синтез лекарственных веществ подразумевает создание веществ с заранее заданными фармакологическими свойствами.

2. ВЫДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ ИЗ ТКАНЕЙ И ОРГАНОВ ЖИВОТНЫХ, РАСТЕНИЙ И МИНЕРАЛОВ

Таким путем выделены лекарственные вещества или комплексы веществ: гор­моны; галеновы, новогаленовы препараты, органопрепараты и минеральные ве­щества.

3. ВЫДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ, ЯВЛЯЮЩИХСЯ ПРОДУКТАМИ ЖИЗНЕДЕЯТЕЛЬ­НОСТИ ГРИБОВ И МИКРООРГАНИЗМОВ, МЕТОДАМИ БИОТЕХНОЛОГИИ (клеточной и генной инженерии)

Выделением лекарственных веществ, являющихся продуктами жизнедеятель­ности грибов и микроорганизмов, занимается биотехнология.

Биотехнология использует в промышленном масштабе биологические систе­мы и биологические процессы. Обычно применяются микроорганизмы, культу­ры клеток, культуры тканей растений и животных.

Биотехнологическими методами получают полусинтетические антибиотики. Большой интерес представляет получение в промышленном масштабе инсулина человека методом генной инженерии.

ВТОРОЙ ЭТАП

После получения новой активной субстанции и определения ее основных фар­макологических свойств она проходит ряд доклинических исследований.

Каждое лекарственное средство до того, как начнет применяться в практической медицине должно пройти определенную процедуру изучения и регистрации, которая гарантировала бы, с одной стороны эффективность лекарства при лечении данной патологии, а с другой стороны – его безопасность.

Изучение лекарственного средства делится на два этапа: доклинический и клинический.

На доклиническом этапе происходит создание субстанции лекарственного вещества и испытание лекарственного препарата на животных с целью определения фармакологического профиля лекарства, определения острой и хронической токсичности, тератогенного (ненаследуемые дефекты в потомстве), мутагенного (наследуемые дефекты в потомстве) и канцерогенного действия (опухолевая трансформация клетки). Клинические испытания проводятся на добровольцах и делятся на три фазы. Первая фаза проводится на небольшом количестве здоровых людей и служит для определения безопасности препарата. Вторая фаза проводится на ограниченном числе пациентов (100-300 человек). Определяют переносимость терапевтических доз больным человеком и ожидаемые нежелательные эффекты. Третья фаза выполняется на большом числе пациентов (не менее 1.000-5.000 человек). Определяют степень выраженности терапевтического эффекта, уточняют нежелательные эффекты. При исследовании параллельно с группой принимающей исследуемое лекарство, набирается группа, которая получает стандартный препарат сравнения (позитивный контроль) или неактивный препарат, который внешне имитирует изучаемое лекарство (плацебо контроль). Это необходимо для того, чтобы исключить элемент самовнушения при лечении данным лекарством. При этом принимает ли пациент контрольный препарат или новое лекарство может не знать не только сам пациент, но и врач и даже руководитель исследования. Параллельно с началом продаж нового лекарства фармацевтический концерн организует четвертую фазу клинических испытаний (постмаркетинговые исследования). Цель этой фазы – выявить редко встречающиеся, но потенциально опасные нежелательные эффекты лекарства. Участниками этой фазы являются все практикующие врачи, которые назначают лекарство и пациенту, которые его применяют. При обнаружении серьезных недостатков лекарство может быть отозвано концерном. В целом процесс разработки нового лекарства занимает от 5 до 15 лет.



При проведении клинических испытаний возросли интенсивность общения и кооперация специалистов в области фундаментальной и клинической фармакологии, токсикологии, клинической медицины, генетики, молекулярной биологии, химии и биотехнологии.

Фармакокинетические и фармакодинамические параметры стали определять как на этапе доклинических фармакологических и токсикологических исследований, так и на стадии клинических испытаний. Выбор доз стал базироваться на оценке концентраций лекарственных средств и их метаболитов в организме. В арсенал токсикологии вошли исследования in vitro и эксперименты на трансгенных животных, позволившие приблизить модели заболеваний к реально существующим болезням человека.

В развитие фармакологии большой вклад внесли отечественные ученые. Иван Петрович Павлов (1849 - 1936) руководил экспериментальной лабораторией в клинике С. П. Боткина (1879 - 1890), заведовал кафедрой фармакологии в Военно-медицинской академии Санкт-Петербурга (1890 -1895). До этого, в 1890 г., он был избран заведующим кафедрой фармакологии в Императорском Томском университете. Деятельность И. П. Павлова как фармаколога отличалась широким научным размахом, блестящей постановкой экспериментов и глубоким физиологическим анализом

фармакологических данных. Физиологические методы, созданные И. П. Павловым, позволили исследовать лечебное действие сердечных гликозидов (ландыш, горицвет, морозник) на сердце и кровообращение, установить механизм жаропонижающего эффекта антипирина, изучить влияние алкалоидов (пилокарпин, никотин, атропин, морфин), кислот, щелочей и горечей на пищеварение.

Гениальным завершением научного творчества И. П. Павлова стали работы по физиологии и фармакологии высшей нервной деятельности. С помощью метода условных рефлексов впервые был открыт механизм действия на ЦНС спирта этилового, бромидов, кофеина. В 1904 г. исследования И.П. Павлова были удостоены Нобелевской премии.

Николай Павлович Кравков (1865 - 1924) - общепризнанный основоположник современного этапа развития отечественной фармакологии, создатель большой научной школы, руководитель кафедры в Военно-медицинской академии (1899 - 1924). Он открыл новое экспериментально-патологическое направление в фармакологии, внедрил в экспериментальную практику метод изолированных органов, предложил и совместно с хирургом С. П. Федоровым осуществил в клинике внутривенный наркоз гедоналом. Н. П. Кравков является основателем отечественной промышленной токсикологии, эволюционной и сравнительной фармакологии, впервые изучал действие лекарственных средств на эндокринную систему. Двухтомное руководство Н. П. Кравкова "Основы фармакологии" издавалось 14 раз. В память о выдающемся ученом учреждены премия и медаль за работы, которые внесли значительный вклад в развитие фармакологии.

Ученики Н. П. Кравкова Сергей Викторович Аничков (1892 - 1981) и Василий Васильевич Закусов (1903-1986) провели фундаментальные исследования синаптотропных средств и препаратов, регулирующих функции ЦНС.

Прогрессивные направления в фармакологии создали М. П. Николаев (исследовал действие лекарственных средств при заболеваниях сердечно-сосудистой системы), В. И. Скворцов (изучал фармакологию синаптотропных и снотворных средств), Н. В. Вершинин (предложил для медицинской практики препараты сибирских лекарственных растений и полусинтетическую левовращающую камфору), А. И. Черкес (автор фундаментальных работ по токсикологии и биохимической фармакологии сердечных гликозидов), Н. В. Лазарев (разработал модели заболеваний для оценки действия лекарственных средств, крупный специалист в области промышленной токсикологии), А. В. Вальдман (создатель эффективных психотропных препаратов), М. Д. Машковский (создатель оригинальных антидепрессантов, автор популярного руководства по фармакотерапии для врачей), Е. М. Думенова (создала эффективные средства для лечения эпилепсии), А. С. Саратиков (предложил для клиники препараты камфоры, психостимуляторы-адаптогены, гепатотропные средства, индукторы интерферона).

Путь от получения индивидуального химического соединения до внедрения препарата в медицинскую практику занимает большой отрезок времени и включает в себя следующие этапы:

1) тонкий органический, биоорганический или микробиологический

синтез, идентификация и выделение соединений. Скрининг (отбор БАС) in vitro;

2) создание модели лекарственной формы;

3) проверка биологической активности на животных (in vivo);

4) нахождение оптимального метода синтеза, проверка биологической активности;

5) разработка лекарственной формы;

6) исследование острой и хронической токсичности, мутагенности, тератотоксичности, пирогенности;

7) изучение фармакокинетики и фармакодинамики (в т. ч. и синтез препарата меченного изотопами 3 Н и 14 С);

8) разработка лабораторного регламента производства;

9) клинические испытания;

10) разработка опытно-промышленного регламента, производственного регламента, ВФС, утверждение ВФС;

11) разрешение фармкомитета, приказ Минздрава РФ на применение лекарственного средства. Оформление документации на производство.

Общая стоимость разработки нового лекарственного средства достигает 400 млн долларов США.

Для уменьшения стоимости разработки ЛС используются достижения молекулярной биологии – целенаправленный синтез . Примером такого синтеза может служить создание антагонистов метаболитов нуклеинового обмена – 5-фторурацила, 6-меркаптопурина, флударабина. Еще одним примером является противораковый препарат мелфалан (рацемат – сарколизин).

В самом начале пути создания противоопухолевых препаратов использовали эмбихин – N- метил-N- бис(b-хлорэтил)амин.

Лечение этим препаратом ярко описано А.И. Солженицыным в романе «Раковый корпус». Препарат высокотоксичен, процент излеченных больных был мал (А.И. Солженицыну повезло). Академик АМН Л.Ф. Ларионов предложил ввести азотипритную группу в метаболит – фенилаланин. Так был синтезирован сарколизин, дающий хорошие результаты при лечении рака яичка. В настоящее время используют не рацемат, а оптически индивидуальный препарат – мелфалан. Блестящим примером целенаправленного синтеза является ингибитор превращения неактивного агиотензина I в активный агиотензин II – препарат каптоприл. Агиотензин I является декапептидом, а агиотензин II октапептидом. Карбоксипептидаза А отщепляет с карбоксиконца пептида последовательно лейцин и гистидин, но не может работать в том случае, если предыдущей аминокислотой является пролин.

Знание тонкого механизма работы фермента позволило синтезировать его ингибитор. Ангиотензин II обладает выраженной биологической активностью – вызывает сужение артериол, прессорное действие в 40 раз превосходит действие норадреналина. Каптоприл ингибирует карбоксипептидазу, его используют для лечения гипертонии. Тот же самый принцип был использован при синтезе препарата эналаприл. Рассмотренные препараты – метотрексат, азометония бромид, атенолол и фенилэфрин были получены в результате целенаправленного синтеза.

Другим направлением поиска БАВ является массовый скрининг – проверка биологической активности вновь синтезированных соединений. Ферменты и рецепторы имеют в пространственной структуре «карманы», в которые входят метаболиты или медиаторы. Во взаимодействии метаболита с ферментом принимают участие как полярные группировки, так и гидрофобные. Поэтому при отборе новых соединений для изучения биологической активности необходимо в молекуле иметь сочетание полярных и гидрофобных групп. В качестве гидрофобной части – Alk, Alk(F) n , а также циклические соединения. Но гетероциклы кроме гидрофобной части имеют уже и заряд. В качестве полярных групп используют: OH; O-Alk, OAc, NH 2 ; NHAlk, N(Alk) 2 , NHAc, SO 2 NHR, COOH, C=O, COOR, CONR 1 R 2 , NO 2 , SH, полярные гидрофобные – Cl, Br, J, F. Эти группы, введенные в гидрофобную молекулу, часто придают соединению биологическую активность, и их называют фармакофорными группами.

Введение фармакофорных групп не должно быть беспорядочным. Желательно, чтобы гидрофобные участки и полярные группы располагались на определенном расстоянии. Тем самым они могут моделировать либо метаболит, либо природное лекарственное средство. Этот принцип подобия был заложен в синтезе местноанестезирующих препаратов – анестезина и новокаина. Природным продуктом, обладающим мощным анестезирующим действием, является кокаин. Однако использование наркотического средства далеко небезопасно. В данном случае моделирование структуры природного продукта привело к положительным результатам. Структуры соединений приведены на схеме:

Поиск таких лекарственных средств занял около двадцати лет.

Еще в 80-е гг. XX в. отбор БАС проводился на животных, при этом химику-синтетику требовалось для первичных испытаний нарабатывать десятки граммов соединения. Статистика показывает, что одно новое БАС удается найти при «слепом» синтезе среди 100 000 вновь синтезированных веществ. Для уменьшения затрат скрининг стали проводить на изолированных органах, а затем и на клетках. Причем количество нарабатываемого вещества сократилось до сотен миллиграммов. И, естественно, увеличилось количество изучаемых веществ. Противоопухолевая и противовирусная активность новых соединений в настоящее время изучается на клетках. Живые и убитые клетки при окрашивании имеют различную окраску. Чем больше находят мертвых клеток человеческого штамма злокачественной опухоли под действием испытуемого вещества, тем оно более активно.В институте рака Национального института здоровья США, испытания проводятся на 55 штаммах человеческих опухолей, адаптированных для роста в условиях in vitro. При изучении противовирусной активности клетки, зараженные вирусом, прибавляют к раствору препарата. Ведут подсчет живых клеток.

При исследовании активности вновь синтезированных соединений подлинная революция произошла благодаря успехам биотехнологии. Доступность биомакромолекул (ферментов, белков рецепторов, РНК и т. п.), помещенных на твердый носитель, позволяет с помощью измерения биолюминесценции определять их ингибирование или стимуляцию под действием нового вещества. В настоящее время испытывается in vitro в фирме «Байер» 20 000 новых соединений в год. При этом существенно возрастает роль химиков синтетиков, которые должны обеспечить массовую наработку новых соединений и билдинг-блоков. Возникла так называемая комбинаторная химия (принципы комбинаторной химии рассмотрены в отдельном разделе). Основой для выбора такого синтеза является компьютерный анализ баз данных, в т. ч. и по наличию фармакофорных групп в определенных положениях молекул. Для создания «библиотеки» новых соединений с помощью методов комбинаторной химии необходимо знать закономерности протекания химических реакций. Это является одной из задач данного курса.

Еще одним направлением поиска БАВ служит модификация уже известных лекарственных соединений. Целью изменения структуры ЛС является снижение побочного действия препарата, а также повышение его активности – увеличение терапевтического индекса I t . Определенную роль играет изучение количественной взаимосвязи структура – активность. В качестве одного из примеров можно привести использование метода Хэнча, основанного на определении или расчете по аддитивной схеме липофильности соединения. В качестве меры липофильности используют коэффициент распределения (Р) вещества в системе октанол – вода. В общем виде уравнение Хэнча можно представить следующим выражением

lg 1/c = a 0 + a 1 lgP – a 2 (lgP) 2 + a 3 s + a 4 E s

где с – любая экспериментальная величина, характеризующая биологическую активность; a i – постоянные, полученные при обработке экспериментальных данных; Р –коэффициент распределения октанол – вода (Р = С октанол /С вода, С – концентрация вещества в каждой из фаз), параметры s, E s отражают электронные и стерические параметры молекулы.

Анализ уравнения показывает, что lg 1/c = f lgP, т.е. кривая проходит через максимум, соответствующий веществу с наибольшей активностью. Уравнение в грубом приближении описывает две стадии действия ЛС:

1) транспорт к участку действия;

2) взаимодействие с биомакромолекулой.

В качестве примера можно привести уравнение, связывающее Р с противоопухолевой активностью нитрозоалкилмочевин:

lg 1/c = - 0,061(lgP) 2 + 0,038lgP + 1,31

Седативная активность барбитуратов, изученная на мышах, связана с липофильностью следующим уравнением:

lg 1/c = 0,928 + 1,763 lgP - 0,327(lgP) 2

Активность, изученная на кроликах, дает несколько другое соотношение:

lg 1/c = 0,602 + 2,221 lgP - 0,326(lgP) 2

Хотя коэффициенты в этих уравнениях разные, общая тенденция сохраняется. Уравнение Хэнча сыграло свою роль при разработке современных компьютерных программ отбора веществ для изучения их биологической активности. В результате скрининга были найдены рассмотренные препараты циметидин и фентоламин. Изучение их механизма действия привело к открытию a-адренорецепторов и Н 2 -рецепторов.

При планировании синтеза ряда новых веществ целесообразно задаваться определенной молекулярно-биологической гипотезой, т.е. приближаться к целенаправленному синтезу. После нахождения in vitro активности соединения обязательно проверяют действие соединения in vivo. На последующих стадиях к будущему препарату предъявляют требования:

1) высокая эффективность лечебного эффекта;

2) максимальная величина I t , минимальное побочное действие;

3) после оказания лечебного действия препарат должен инактивироваться и выводиться из организма;

4) препарат не должен вызывать неприятных ощущений (вкус, запах, внешний вид);

5) препарат должен быть стабильным, минимальный срок хранения препарата должен быть не менее двух лет.

Обычным требованием к синтетическому препарату, за немногими исключениями, является высокая чистота субстанции. Как правило, содержание основного вещества в субстанции должно быть не менее 98 – 99 %. Наличие примесей регламентируется Фармакопейной статьей. При изменении метода синтеза необходимо проверять препарат на биоэквивалентность с ранее применявшимся ЛС.

1.2.2. Разработка плана синтеза

Каждое лекарственное средство может быть синтезировано несколькими альтернативными методами с использованием различных видов исходных продуктов (сырья). Появление новых видов полупродуктов, реакций и технологических процессов может резко изменить метод получения даже известных препаратов. Поэтому необходимо наработать практику составления плана синтеза БАВ на основе знания теории прохождения химических процессов органического синтеза, его конкретных условий и особенностей технологического оформления.

При разработке плана синтеза имеются два основных подхода – синтетический и ретросинтетический. Первый предполагает обычный подход: исходя из известных видов сырья, наметить последовательность реакций. Вторым методом разработки альтернативных путей получения БАВ является ретросинтетический подход к планированию синтеза. Прежде всего для его освоения необходимо привести терминологию:

1. Этот знак Þ трансформация – мысленная операция расчленения молекулы при ретросинтетическом анализе, противоположная знаку реакции.

2. После расчленения молекулы на части возникают заряженные осколки Х + Y¯ - синтоны.

3. Частицам Х + и Y¯ необходимо подобрать реальное химическое соединение, в котором будут либо те же заряды, либо d + , d¯ - синтетические эквиваленты . Синтетический эквивалент – реальное химическое соединение, позволяющее ввести синтон в молекулу в процессе ее конструирования.

4. БАВ – целевое соединение.

Далее, при трансформации необходимо расставить заряды синтонов так, чтобы отрицательный заряд находился на атоме, имеющем более высокую электроотрицательность, а положительный на менее электроотрицательном. В качестве примера можно рассмотреть ретросинтетический анализ молекулы парацетамола.

При трансформации молекулы разрываем связь С-N. Отрицательный заряд остается на группе NH, а положительный – на ацетильной группе. Соответственно синтетическими эквивалентами будут п -аминофенол и уксусный ангидрид или хлористый ацетил. Синтетический подход к разработке плана синтеза показан на схеме. Технический п -аминофенол не годится для получения парацетамола, т. к. содержит до 5 % продуктов окисления и других примесей, а очистка экономически невыгодна. Для синтеза препарата необходимо использовать свежеприготовленный продукт. Он может быть получен восстановлением п -нитрозофенола или п -нитрофенола. Пока в промышленности используют восстановление п -нитрофенола (причины этого рассмотрены в разделе «Реакции нитрозирования»).

В свою очередь п -нитрофенол может быть синтезирован нитрованием фенола или гидролизом п -нитрохлорбензола. В случае нитрования фенола возникают технологические трудности из-за энергичного протекания реакции нитрования, сопровождающегося некоторым осмолением реакционной массы. Кроме того, велики энергозатраты на разделение о- и п -изомеров. Таким образом, наиболее рационально получать п -нитрофенол гидролизом нитрохлорбензола, который является промышленно производимым продуктом. Даже на этом простейшем примере видно, что для ретросинтетического анализа необходимо уверенное знание органических реакций, их механизма, представления об источниках сырья и его доступности. Возможности разработки технологии производства обусловлены условиями проведения реакций, аппаратурным оформлением процессов, вопросами максимального использования сырья, а также вопросами экономики и экологии.

После составления альтернативных планов получения препарата разрабатывают оптимальный метод промышленного синтеза (ОМПС). Разработка ОМПС требует учета следующих факторов:

1) минимальное количество стадий. Каждая стадия – это затраты времени и сырья, увеличение количества отходов. Синтез должен быть по возможности коротким. Желательно использовать реакции, которые осуществляются в одну стадию или, по крайней мере, не требуют выделения промежуточных продуктов;

2) выход на каждой стадии. В идеале выход должен быть количественным (реально – очень редко), но хотя бы максимально возможным. Желательно, чтобы выделение продукта было простым и доступным;

3) хемоселективность реакции. С практической точки зрения имеет исключительное значение проведение реакции по одному из нескольких реакционных центров исходного соединения (региоселективность) или получение одного из возможных стереоизомеров (стереоселективность). Учет этого требования помогает избежать кропотливой работы по разделению изомеров и уменьшает количество отходов производства;

4) условия реакции. Превращение должно протекать в легкодостижимых условиях и не должно сопровождаться использованием или выделением высокопожаро-, взрывоопасных либо токсичных веществ;

5) процесс не должен ни при каких условиях привести к экологической катастрофе;

6) побочные продукты процесса должны быть легко удаляемыми и в идеале должны быть используемы либо легко подвергаться обезвреживанию.

В реальных условиях производства сложность заключается в том, что учет всех этих факторов приводит к противоречивым результатам, и ОМПС становится неоднозначным. Технолог длжен отдать предпочтение тем методам, которые дают максимальный экономический эффект, но без ущерба экологии.


1.3. сырьевая база

химико-фармацевтической промышленности

Основные продукты, которые получают с помощью тонкого, основного, нефтеоргсинтеза, лесохимии, коксохимического и микробиологического производства.

Для планирования синтеза конкретного лекарственного препарата и технологического оформления процессов необходимо в первую очередь обратиться к литературе и выяснить состояние промышленной разработки в нашей стране и за рубежом. Вторым шагом является оценка имеющихся либо вновь разработанных альтернативных методов получения препарата с точки зрения использования различных видов сырья в каждом методе, его стоимость и доступность. Для примера: в синтезе препарата необходимо использовать п -нитрохлорбензол. Его производят на Березниковском химзаводе, Рубежанском химкомбинате (Украина) и фирме Merk (Германия). Стоимость 1 т продукта одинакова, но транспортные расходы весьма отличаются. К тому же необходимо оценить и надежность поставщика. Безусловно, самым надежным будет его производство на своем заводе, но стоимость крупнотоннажного производства, конечно же ниже, чем своего небольшого.

Основные отрасли промышленности, которые поставляют сырье для промышленного получения синтетических ЛС в химико-фармацевтической промышленности (ХФП):

1) химическая переработка каменного угля, нефти, газа, древесины;

2) выделение продуктов из сырья растительного и животного происхож-дения;

3) микробиологический синтез.

Рассмотрим более подробно каждый из источников.

Просмотренно: 12173 | Добавленно: 24 марта 2013

Источниками получения лекарств могут быть:

  • Продукты химического синтеза. В настоящее время большинство лекарств получают именно этим путем. Различают несколько путей изыскания лекарств среди продуктов химического синтеза:
  • Фармакологический скрининг (англ. to screen - просеивать). Метод поиска веществ с определенным типом фармакологической активности среди множества химических соединений синтезированных химиками по специальному заказу. Впервые фармакологический скрининг применил немецкий ученый Домагк, который работал в химическом концерне IG-FI и проводил поиск антимикробных средств среди соединений, синтезированных для крашения тканей. У одного из этих красителей - красного стрептоцида и было обнаружено противомикробное действие. Так были открыты сульфаниламидные средства. Проведение скрининга - чрезвычайно трудоемкий и затратный процесс: для обнаружения одного лекарственного средства исследователю приходится тестировать несколько сотен или тысяч соединений. Так, Пауль Эрлих, при поиске противосифилитических средств изучил около 1000 органических соединений мышьяка и висмута и только 606-й препарат - сальварсан, оказался достаточно эффективным. В настоящее время, для проведения скрининга необходимо синтезировать не менее 10.000 исходных соединений, чтобы с большей долей уверенности полагать, что среди них имеется одно (!) потенциально эффективное лекарственное средство.
  • Молекулярное конструирование лекарств. Создание сканнирующей томографии и рентгенструктурного анализа, развитие компьтерных технологий позволили получать трехмерные изображения активных центров рецепторов и ферментов и подбирать к ним молекулы, конфигурация которых точно соответствует их форме. Молеуклярное конструирование не требует синтеза тысяч соединений и их тестирования. Исследователь сразу создает несколько молекул идеально подходящих к биологическому субстрату. Однако, по своей экономической стоимости данный метод не уступает скринингу. Методом молекулярного конструирования были получены ингибиторы нейраминидазы - новая группа противовирусных препаратов.
  • Воспроизведение биогенных веществ. Таким образом были получены медиаторные средства - адреналин, норадреналин, простагландины; средства с активностью гормонов гипофиза (окситоцин, вазопрессин), щитовидной железы, надпочечников.
  • Целенаправленная модификация молекул с уже известной активностью. Так, например, было установлено, что введение атомов фтора в молекулы лекарств, как правило повышает их активность. Путем фторирования кортизола были созданы мощные глюкокортикоидные препараты, при фторировании хинолонов были получены наиболее активные противомикробные средства - фторхинолоны.
  • Синтез фармакологически активных метаболитов. При изучении метаболизма транквилизатора диазепама было установлено, что в печени из него образуется вещество с транквилизирующей активностью - оксазепам. В настоящее время оксазепам синтезируется и выпускается как отдельное лекарственное средство.
  • Случайные находки («серендипитный» метод). Метод получил свое название по сказке Горация Уолпола «Три принцессы Серендипи». Эти сестры часто совершали удачные открытия и находили решения проблем сами специально не желая того. Примером «серендипитного» получения лекарства является создание пенициллина, которое произошло во многом благодаря тому, что A. Fleming случайно обратил внимание на то, что в заплесневелой чашке, забытой в термостате на Рождество, погибли микроорганизмы. Иногда случайные открытия совершаются в результате ошибки. Так например, ошибочно полагая, что противосудорожное действие фенитоина связано с тем, что он является антагонистом фолиевой кислоты, сотрудники концерна Glaxo Wellcome синтезировали ламотриджин - новое противосудорожное средство. Однако, оказалось что, во-первых, действие фенитоина не связано с фолиевой кислотой, а во-вторых, сам ламотриджин не вмешивается в обмен фолатов.
  • Компоненты растительного сырья. Многие растения содержат вещества, обладающие полезными фармакологическими свойствами, причем до настоящего времени продолжается открытие все новых и новых соединений. Широко известными примерами лекарственных средств, полученных из лекарственного растительного сырья являются морфин, выделенный из опийного мака (Papaver somniferum ), атропин, полученный из красавки (Atropa belladonna ).
  • Ткани животных. Из тканей животных получают некоторые гормональные препараты - инсулин из тканей поджелудочной железы свиней, эстрогены из мочи жеребцов, ФСГ из мочи женщин.
  • Продукты жизнедеятельности микроорганизмов. Ряд антибиотиков, средства для лечения атеросклероза из группы статинов получают из культуральной жидкости различных грибков и бактерий.
  • Минеральное сырье. Из попутных продуктов нефтеперегонки получают вазелин, используемый в качестве мазевой основы.

Каждое лекарственное средство до того, как начнет применяться в практической медицине должно пройти определенную процедуру изучения и регистрации, которая гарантировала бы, с одной стороны эффективность лекарства при лечении данной патологии, а с другой стороны - его безопасность. Внедрение лекарственных средств делят на ряд этапов (см. таблицу 1).

На схеме 2 показаны основные этапы движения лекарства в процессе его разработки и изучения. После завершения III фазы клинических испытаний документация вновь поступает в Фармакологический комитет (объем полного досье может составлять до 1 млн. страниц) и в течение 1-2 лет регистрируется в Государственном реестре лекарственных средств и изделий медицинского назначения. Только после этого фармакологический концерн имеет право начать промышленный выпуск лекарственного средства и его распространение через аптечную сеть.
Таблица 1. Краткая характеристика основных этапов при разработке новых лекарств.

Этап Краткая характеристика
Доклинические испытания (»4 года)

После завершения материалы передаются для экспертизы в Фармакологический комитет, который санкционирует проведение клинических испытаний.

  • Исследование in vitro и создание лекарственной субстанции;
  • Исследования на животных (не менее чем на 2 видах, один из которых - не грызуны). Программа исследований:
    • Фармакологический профиль лекарства (механизм действия, фармакологические эффекты и их селективность);
    • Острая и хроническая токсичность лекарства;
    • Тератогенное действие (ненаследуемые дефекты в потомстве);
    • Мутагенное действие (наследуемые дефекты в потомстве);
    • Канцерогенное действие (опухолевая трансформация клетки).
Клинические испытания (»8-9 лет)
Включают 3 фазы. Экспертиза документации Фармакологическим комитетом проводится после завершения каждой фазы. Лекарство может быть отозвано на любом этапе.
  • ФАЗА I. ЯВЛЯЕТСЯ ЛИ ВЕЩЕСТВО БЕЗОПАСНЫМ? Исследуют фармакокинетику и зависимость эффекта лекарства от его дозы на небольшом числе (20-50 человек) здоровых добровольцев.
  • ФАЗА II. ОКАЗЫВАЕТ ЛИ ВЕЩЕСТВО ДЕЙСТВИЕ В ОРГАНИЗМЕ ПАЦИЕНТА? Выполняют на ограниченном числе пациентов (100-300 человек). Определяют переносимость терапевтических доз больным человеком и ожидаемые нежелательные эффекты.
  • ФАЗА III. ЯВЛЯЕТСЯ ЛИ ВЕЩЕСТВО ЭФФЕКТИВНЫМ? Выполняют на большом числе пациентов (не менее 1.000-5.000 человек). Определяют степень выраженности эффекта, уточняют нежелательные эффекты.

Схема 2. Основные этапы исследования и внедрения лекарства в медицинскую практику.
Однако, параллельно с продажей лекарства фармацевтический концерн организует IV фазу клинических испытаний (постмаркетинговые исследования). Цель этой фазы - выявить редко встречающиеся, но потенциально опасные нежелательные эффекты лекарства. Участниками этой фазы являются все практикующие врачи, которые назначают лекарство и пациенту, которые его применяют. При обнаружении серьезных недостатков лекарство может быть отозвано концерном. Например, после того как новый фторхинолон третьего поколения грепафлоксацин успешно прошел все этапы испытаний и поступил в продажу фирма-производитель отозвала лекарство менее чем через год. В ходе постмаркетинговых исследований было обнаружено, что грепафлоксацин может быть причиной летальных аритмий.
При организации и проведении клинических испытаний должны выполняться следующие требования:

  • Исследование должно быть контролируемым - т.е. параллельно с группой принимающей исследуемое лекарство, должна быть набрана группа, которая получает стандартный препарат сравнения (позитивный контроль) или неактивный препарат, который внешне имитирует изучаемое лекарство (плацебо контроль). Это необходимо для того, чтобы исключить элемент самовнушения при лечении данным лекарством. В зависимости от вида контроля различают:
    • Простое слепое исследование: пациент не знает, что он принимает - новое лекарство или контрольный препарат (плацебо).
    • Двойное слепое исследование: и пациент, и врач, который выдает препараты и оценивает их эффект не знают, что получает пациент - новое лекарство или контрольный препарат. Информацией об этом обладает только руководитель исследования.
    • Тройное слепое исследование: ни пациент, ни врач и руководитель исследования не знают, какая группа получает лечение новым лекарство, а какая контрольными средствами. Информация об этом находится у независимого наблюдателя.
  • Исследование должно быть рандомизированным - т.е. однородная группа пациентов должна быть случайным образом разделена на экспериментальную и контрольную группу.
  • Исследование должно быть организовано с соблюдением всех этических норм и принципов, которые изложены в Хельсинской декларации.

Создание лекарственного препарата - длительный процесс, включающий несколько основных этапов - от прогнозирования до реализации в аптеке (рис. 2.1).


Good Laboratory Practice (GLP) - надлежащая лабораторная практика (правила доклинических исследований безопасности и эффективности будущего ЛС)
Good Manufacturing Practice (GMP) - надлежащая производственная практика (правила организации производства и контроля качества ЛС)
Good Pharmacy Practice (GPP) - надлежащая фармацевтическая (аптечная) деятельность

Good Education Practice (GEP) - надлежащая образовательная практика

Рис. 2.1. Периоды «жизни» лекарственного средства


Основой прогнозирования биологической активности лекарственного вещества является установление связи между фармакологическим действием (биологической активностью) и структурой с учетом физико-химических свойств лекарственного вещества и биологических сред (рис. 2.2).

Как видно из рисунка, химическое соединение для проявления биологической активности должно обладать целым рядом физико-химических параметров, соответствующих аналогичным характеристикам биологических сред. Только в случае оптимального сочетания таких свойств химическое соединение может рассматриваться как «претендент» на участие в фармакологическом скрининге.

Перечисленные физико-химические параметры лекарственного вещества являются функцией его структуры. Количественную оценку биологической активности органических соединений позволяет осуществить уже упомянутый ранее Q S AR(ККСА) - метод.

Рассмотрим отдельные примеры, демонстрирующие основные пути создания лекарственных средств.

Модификация структур известных лекарственных средств. Наглядным примером является получение синтетических анестетиков - новокаина (прокаина), дикаина (тетракаина), являющихся структурными аналогами природного алкалоида кокаина. Кокаин - дициклическое соединение, в состав которого входят пирролидиновое и пиперидиновое кольца. Все три вещества относятся к фармакологической группе местных анестетиков, обратимо блокирующих проведение нервного импульса.

В формулах кокаина, новокаина и дикаина можно выделить аналогичные группы: ароматическое кольцо (липофильная группа), соединенное через эфирную группу с ионизируемой группой - третичным амином (гидрофильная группа):


В настоящее время фармакологи считают эталоном местных анестетиков лидокаин, также синтетическое ЛС. В отличие от рассмотренных выше молекула лидокаина вместо эфирной содержит амидную группу:

Другим примером создания ЛС путем модификации известных препаратов является получение новых ЛС группы пенициллинов, цефалоспоринов, сульфаниламидов (см. соответствующие подразд. ч. 2).

Копирование известных физиологически активных веществ. В качестве примера приведем разработку полного химического синтеза антибиотика левоми- цетина. Сначала левомицетин (хлорамфеникол)


был выделен из культуральной жидкости Streptomyces venezuelae. В настоящее время в промышленности его получают 10-стадийным синтезом из стирола.

Как следует из приведенных примеров, оба рассмотренных подхода близки по своей сути. Однако следует подчеркнуть, что в отличие от местных анестетиков при копировании природного левомицетина небольшие изменения в его структуре ведут к уменьшению или полной потере активности этого антибиотика (см. разд. III).

Поиск антиметаболитов (антагонистов естественных метаболитов). Испытания in vitro антибактериальных свойств красного красителя пронтозила продемонстрировали его неэффективность. Однако in vivo пронтозил проявлял высокую активность против гемолитического стрептококка. Оказалось, что пронтозил в организме превращался в активное ЛВ - сульфаниламид. За всю историю развития сульфаниламидных препаратов на фармацевтическом рынке появилось около 150 различных его модификаций.

Сульфаниламиды являются структурными геометрическими аналогами и-аминобензойной кислоты и нарушают синтез фолиевой кислоты: фермент, ответственный за синтез последней, использует не саму аминобензойную кислоту, а ее имитатор - сульфаниламид. Фолиевая кислота необходима для синтеза пуриновых оснований и последующего синтеза нуклеиновых кислот. Появление в среде производных сульфаниловой кислоты приводит к прекращению роста бактериальных клеток.


Из представленных ниже формул наглядно видно, что сульфаниламиды являются антиметаболитами и-аминобензойной кислоты.

г /СООН

СН2СН2СООН.

Фрагмент глутаминовой кислоты

Фрагмент птероевой кислоты

Фолиевая кислота

Исследование метаболизма лекарств. Некоторые ЛС обладают способностью метаболизироваться в организме человека с образованием более активных веществ. Широко применяемый для лечения гипертонической болезни препарат группы ингибиторов ангиотензинпревращающего фермента престариум (пе- риндоприл) является предшественником лекарства. В организме он метаболи- зируется в более активный метаболит - периндоприлат.

Некоторые ЛС, например, антидепрессант имипрамин превращается в организме в более активный антидепрессант дезипрамин, также применяющийся как ЛС.

Наркотический анальгетик кодеин и полусинтетический наркотик героин метаболизируются в морфин, природный алкалоид опия.

Использование в терапии новых свойств уже известных лекарственных препаратов. Было обнаружено, что p-адреноблокаторы, адреномиметические вещества, обладают гипотензивным свойством. Широко применяемый аспирин (ацетилсалициловая кислота) может оказывать не только противовоспалительное, анальгезирующее, жаропонижающее, но и антиагрегационное действие и назначается при ишемической болезни сердца и наличии ряда факторов ИБС.

Создание комбинированных препаратов. Одновременное действие компонентов бисептола (бактрима) - триметоприма и сульфаметоксазола характеризуется синергизмом, т.е. усилением действия при их комбинировании. Это позволяет использовать лекарственные вещества в более низких дозах и тем самым снизить их токсичность. Сочетание указанных ЛВ обеспечивает высокую бактерицидную активность в отношении грамположительных и грамотрицатель- ных микроорганизмов, в том числе бактерий, устойчивых к сульфаниламидным препаратам.

Копирование известных лекарственных препаратов. Поиск оригинальных лекарственных субстанций не всегда выгоден, так как требует больших экономических затрат и делает их недоступными для потребителя. Поэтому многие фармацевтические фирмы для создания ЛС используют субстанции, у которых закончился период патентной защиты. Эти препараты называют дженериками (generics) (см. подразд. 2.6).