Будем выращивать органы для человеческого организма. Выращивание органов

В Москве начался двухнедельный научно-популярный фестиваль «Жизнь. Версия науки». В Политехническом музее пройдут лекции известных российских и зарубежных ученых, которые расскажут о том, что наука сегодня знает об эволюции живого и какие перспективы обрело человечество благодаря открытиям последних 30 лет в области биологии и нейрофизиологии. В программе фестиваля также многочисленные выставки футуристического искусства в жанре science art, которые пройдут в центре современного искусства «Винзавод».

Фестиваль открылся лекцией профессора Энтони Атала, эксперта в области регенеративной медицины, выращивания человеческих клеток, тканей и органов. Атала — директор Института регенеративной медицины Уэйк Форест (Северная Каролина, США), практикующий хирург и исследователь. Журнал Scientific American назвал его «врачом года» (Medical Treatments Leader of the Year) за достижения в области регенерации клеток, тканей и органов. В 2008 году журнал Esquire включил его в число 75 самых влиятельных людей XXI столетия.

Накануне выступления профессор Атала рассказал корреспонденту «Газеты.Ru» о своей работе, а также поделился впечатлениями о Москве и о российских ученых.

— Это ваш первый визит в Москву? Как вам город?
— Да, я в первый раз в Москве и в России, и мне здесь очень нравится. Москва — чудесный, очень красивый город!

— В вашем институте есть русские аспиранты или постдоки?
— Конкретно сейчас нет, но раньше у меня работали несколько русских ребят. Сейчас они, правда, продолжают работать в США, в Россию они не вернулись. Это очень сильные ребята, с очень высоким уровнем образования, активные исследователи — было приятно с ними работать.

— Как вы считаете, русские исследователи в России могли бы вести работы на таком же высоком уровне, как вы в США?
— Конечно могли бы. Здесь, в России, им очень не хватает материальных ресурсов, финансирования, поддержки государства. Наш центр получает гигантскую поддержку: только пятилетний контракт с Пентагоном принес в институт $85 млн.

Если бы российские ученые в России имели необходимые ресурсы, наука двигалась бы на совершенно другом уровне.

— Как начинались ваши работы по выращиванию органов из тканей?
— Отрасль регенеративной медицины не нова, она зародилась еще в 30-е годы XX века. В течение этих лет исследователи выделили три основные проблемы. Первая: клетки человеческого тела вне самого тела растут по-другому, не так, как внутри тела. Вторая: для создания искусственных органов нужны особые биосовместимые материалы, которые приживаются в организме пациента, не вызывая отторжения, - что-то вроде хирургической нити для швов. И третья: нам нужно, чтобы имплантируемые органы и ткани интегрировались в систему человеческого тела кровеносными сосудами, так как ни один орган не работает без кровоснабжения.

Мы начали свои работы около 20 лет назад.

Сначала мы научились качественно выращивать клетки вне тела пациента: если сначала мы вообще не умели выращивать клетки мочевого пузыря «в пробирке», то теперь специальные методы позволяют нам взять участок ткани площадью меньше половины почтовой марки и через 60 дней заполнить аналогичными клетками футбольное поле. Второй этап работы - подбор правильных факторов роста, обеспечивающих моделирование естественного роста. И теперь мы можем выращивать клетки самых разных типов вне человеческого организма. Для этого нужно извлечь кусочек ткани из организма, затем в соответствующих условиях размножить клетки и создать условия, в которых они сформируют полноценный орган, нарастая послойно, один слой за другим.

— Какие успехи были достигнуты?
— Первой выращенной тканью была ткань хряща. Это плоская ткань — ее создали достаточно просто. Была хорошая поддержка нашей работы государством, регуляторными органами. После этого мы вырастили кожу - также плоскую ткань, состоящую из одного типа клеток.

Эти медицинские технологии сейчас широко доступны на рынке медицинских услуг.

— А какие работы ведутся «на перспективу»?
— Нам также удалось вырастить сосуды - более сложные образования. Они отличаются тем, что являются уже трубчатыми органами и состоят из двух типов клеток: один из них находится внутри, выстилая внутреннюю поверхность сосуда, а другой снаружи - это мышечные клетки внешних стенок.

Третий тип органов - так называемые полые органы (например, мочевой пузырь и матка), они находятся в постоянном движении и состоят из более двух типов клеток. Эти органы сложнее реконструировать, так как они постоянно контактируют с мозгом и должны быть интегрированы в общую систему. Однако и в выращивании этих органов у нас большой прогресс. Мы берем фрагмент такой ткани у пациента, размножаем его вне организма, затем переносим на каркас из биосовместимого материала, чтобы вырастить полноценный орган, причем один тип клеток покрывает каркас, а другой находится внутри. Через 6-8 недель орган готов для пересадки, и мочевой пузырь мы пересаживаем так же успешно, как и хрящи, однако сама операция в этом случае гораздо сложнее.

Первый мочевой пузырь был пересажен 12 лет назад, первый хрящ - 16 лет назад.

Работы по пересадке мочевого пузыря сейчас находятся в стадии клинических испытаний, всего в каждой из трех стадий по регуляторным правилам США приняли участие 10-20 человек.

— А что дальше? Каковы стратегические цели выращивания органов?
— Существует и четвертый тип органов - это твердые органы, к ним относятся, например, сердце и почки. Они принципиально сложнее: на единицу объема они содержат в разы больше клеток, чем полые, трубчатые или плоские органы. Пока нам удается выращивать их только на основе донорских органов, получаемых в результате смерти человека. Из такого органа мы сначала вымываем все клетки, оставляя лишь «скелет», то есть получаем орган, выглядящий как печень, имеющий форму печени, но печенью не являющийся. Затем на этот «скелет» мы наращиваем наши искусственно выращенные клетки.

Другая технология - 3D-печать твердых органов. В этом случае орган создается прибором, чем-то похожим на струйный принтер, только вместо чернил в него заправлены человеческие клетки разных типов, и процесс печати гораздо сложнее.

Мы надеемся достичь успеха в этой области через несколько лет.

— Сейчас в России набирают популярность банки стволовых клеток пуповинной крови. На ваш взгляд, есть ли смысл хранить кровь ребенка, поможет ли она ему в будущем?
— Все зависит от того, что именно вам нужно. Сейчас существуют технологии лечения рака крови с помощью стволовых клеток пуповинной крови. Соответственно, если в вашей семье есть наследственная вероятность рака крови, то хранить стволовые клетки детей имеет смысл. Если нет - польза на сегодня не очевидна.

Статья на конкурс «био/мол/текст»: Петр I мечтал «прорубить окно в Европу», а ученые нашего времени - окно в современную медицину. Сочетание «медицина + биотехнология» нашло свое отражение в тканевой инженерии - технологии, открывающей возможность восстановления утраченных органов без трансплантации. Методы и результаты тканевой инженерии поражают: это получение живых (а не искусственных!) органов и тканей; регенерация тканей; печать кровеносных сосудов на 3D-принтере; использование «тающих» в организме хирургических шовных нитей и многое другое.

В последние десятилетия стали отчетливо проявляться тревожные тенденции старения населения, роста количества заболеваний и инвалидизации людей трудоспособного возраста, что настоятельно требует освоения и внедрения в клиническую практику новых, более эффективных и доступных методов восстановительного лечения больных. На рисунке 1 показано, как изменяется структура заболеваний в настоящее время.

На сегодняшний день наука и техника предлагает несколько альтернативных путей восстановления или замены поврежденных или пораженных патологией тканей и органов:

  • трансплантацию;
  • имплантацию;
  • тканевую инженерию.

В рамках данной статьи мы подробнее остановимся на возможностях и перспективах тканевой инженерии.

Тканевая инженерия - современная инновационная технология

Принципиально новый подход - клеточная и тканевая инженерия - является последним достижением в области молекулярной и клеточной биологии. Этот подход открыл широкие перспективы для создания эффективных биомедицинских технологий, с помощью которых становится возможным восстановление поврежденных тканей и органов и лечение ряда тяжелых метаболических заболеваний человека.

Цель тканевой инженерии - конструирование и выращивание вне организма человека живых, функциональных тканей или органов для последующей трансплантации пациенту с целью замены или стимуляции регенерации поврежденных органа или ткани. Иными словами, на месте дефекта должна быть восстановлена трехмерная структура ткани.

Важно отметить, что обычные имплантаты из инертных материалов могут устранить только физические и механические недостатки поврежденных тканей, - в отличие от тканей, полученных методом инженерии, которые восстанавливают, в том числе, и биологические (метаболические) функции. То есть, происходит регенерация ткани, а не простое замещение ее синтетическим материалом.

Однако для развития и совершенствования методов реконструктивной медицины на базе тканевой инженерии необходимо освоение новых высокофункциональных материалов. Эти материалы, применяемые для создания биоимплантатов, должны придавать тканеинженерным конструкциям характеристики, присущие живым тканям:

  • способность к самовосстановлению;
  • способность поддерживать кровоснабжение;
  • способность изменять строение и свойства в ответ на факторы окружающей среды, включая механическую нагрузку.

Клетки и матриксы - основа основ для тканевой инженерии

Наиболее важным элементом успеха является наличие необходимого количества функционально активных клеток, способных дифференцироваться, поддерживать соответствующий фенотип и выполнять конкретные биологические функции. Источником клеток могут быть ткани организма и внутренние органы. Возможно использование соответствующих клеток от пациента, нуждающегося в реконструктивной терапии, или от близкого родственника (аутогенных клеток). Могут быть использованы клетки различного происхождения, в том числе первичные (рис. 2) и стволовые клетки (рис. 3).

Рисунок 2. Первичная клетка человека.

библиотека Федерации Киокушинкай г. Южноуральска

Первичные клетки - это зрелые клетки определенной ткани, которые могут быть взяты непосредственно от организма-донора (ex vivo ) хирургическим путем. Если первичные клетки взяты у определенного организма-донора, и впоследствии необходимо имплантировать эти клетки ему же в качестве реципиента, то вероятность отторжения имплантированной ткани исключается, поскольку присутствует максимально возможная иммунологическая совместимость первичных клеток и реципиента. Однако первичные клетки, как правило, не способны делиться - их потенциал к размножению и росту низок. При культивировании таких клеток in vitro (посредством тканевой инженерии) для некоторых типов клеток возможна дедифференцировка, то есть потеря специфических, индивидуальных свойств. Так, например, хондроциты, вводимые в культуру вне организма, часто продуцируют фиброзный, а не прозрачный хрящ.

Поскольку первичные клетки не способны делиться и могут потерять свои специфичные свойства, возникла необходимость альтернативных источников клеток для развития технологий клеточной инженерии. Таковой альтернативой стали стволовые клетки.

Для направления организации, поддержания роста и дифференцировки клеток в процессе реконструкции поврежденной ткани необходим специальный носитель клеток - матрикс , представляющий из себя трехмерную сеть, похожую на губку или пемзу (рис. 4). Для их создания применяют биологически инертные синтетические материалы, материалы на основе природных полимеров (хитозан, альгинат, коллаген) и биокомпозиты. Так, например, эквиваленты костной ткани получают путем направленной дифференцировки стволовых клеток костного мозга, пуповинной крови или жировой ткани в остеобласты, которые затем наносят на различные материалы, поддерживающие их деление (например, донорскую кость, коллагеновые матрицы и др.).

«Фирменная» стратегия тканевой инженерии

На сегодняшний день одна из стратегий тканевой инженерии такова:

  1. Отбор и культивирование собственных или донорских стволовых клеток.
  2. Разработка специального носителя для клеток (матрицы) на основе биосовместимых материалов.
  3. Нанесение культуры клеток на матрицу и размножение клеток в биореакторе со специальными условиями культивирования.
  4. Непосредственное внедрение тканеинженерной конструкции в область пораженного органа или предварительное размещение в области, хорошо снабжаемой кровью, для дозревания и формирования микроциркуляции внутри конструкции (префабрикация).

Матриксы через некоторое время после имплантации в организм хозяина полностью исчезают (в зависимости от скорости роста ткани), а в месте дефекта останется только новая ткань. Также возможно внедрение матрикса с уже частично сформированной новой тканью («биокомпозит»). Безусловно, после имплантации тканеинженерная конструкция должна сохранить свои структуру и функции в течение периода времени, достаточного для восстановления нормально функционирующей ткани в месте дефекта, и интегрироваться с окружающими тканями. Но, к сожалению, идеальные матриксы, удовлетворяющие всем необходимым условиям, пока не созданы.

Кровеносные сосуды из принтера

Перспективные тканеинженерные технологии открыли возможность лабораторного создания живых тканей и органов, но перед созданием сложных органов наука пока бессильна. Однако сравнительно недавно ученые под руководством доктора Гунтера Товара (Gunter Tovar ) из Общества Фраунгофера в Германии сделали огромнейший прорыв в сфере тканевой инженерии - они разработали технологию создания кровеносных сосудов. А ведь казалось, что капиллярные структуры создать искусственно невозможно, поскольку они должны быть гибкими, эластичными, малой формы и при этом взаимодействовать с естественными тканями. Как ни странно, но на помощь пришли производственные технологии - метод быстрого прототипирования (другими словами, 3D-печать). Подразумевается, что сложная трехмерная модель (в нашем случае кровеносный сосуд) печатается на трехмерном струйном принтере с использованием специальных «чернил» (рис. 5).

Принтер наносит материал послойно, и в определенных местах слои соединяются химически. Однако заметим, что для мельчайших капилляров трехмерные принтеры пока недостаточно точны. В связи с этим был применен метод многофотонной полимеризации, используемый в полимерной промышленности. Короткие интенсивные лазерные импульсы, обрабатывающие материал, так сильно возбуждают молекулы, что они взаимодействуют друг с другом, соединяясь в длинные цепочки. Таким образом, материал полимеризуется и становится твердым, но эластичным, как естественные материалы. Эти реакции настолько управляемы, что с их помощью можно создавать мельчайшие структуры по трехмерному «чертежу».

А для того, чтобы созданные кровеносные сосуды могли состыковаться с клетками организма, при изготовлении сосудов в них интегрируют модифицированные биологические структуры (например, гепарин) и «якорные» белки. На следующем этапе в системе созданных «трубочек» закрепляются клетки эндотелия (однослойный пласт плоских клеток, выстилающий внутреннюю поверхность кровеносных сосудов) - для того, чтобы компоненты крови не приклеивались к стенкам сосудистой системы, а свободно транспортировались по ней.

Однако прежде чем действительно можно будет имплантировать выращенные в лаборатории органы с собственными кровеносными сосудами, пройдет еще какое-то время.

Давай, Россия, давай вперед!

Без ложной скромности скажем, что и в России создана научная основа для практического применения биомедицинских материалов нового поколения. Интересную разработку предложила молодой учёный из Красноярска Екатерина Игоревна Шишацкая (рис. 6) - растворимый биосовместимый полимер биопластотан . Суть своей разработки она объясняет просто: «в настоящее время практические медики испытывают большой дефицит материалов, способных заменить сегменты человеческого организма. Нам удалось синтезировать уникальный материал, который в состоянии заменить элементы органов и тканей человека» . Разработка Екатерины Игоревны найдет применение, прежде всего, в хирургии. «Самое простое - это, например, шовные нити, сделанные из нашего полимера, которые растворяются после того, как зарастает рана , - говорит Шишацкая. - Также можно делать специальные вставки в сосуды - стенты. Это маленькие полые трубки, которые используют, чтобы расширить сосуд. Через некоторое время после операции сосуд восстанавливается, а полимерный заменитель растворяется» .

Первый опыт трансплантации тканеинженерной конструкции в клинике

Рисунок 7. Паоло Маккиарини , мастер-класс которого «Клеточные технологии для тканевой инженерии и выращивания органов» прошел в Москве в 2010 году.

Осенью 2008 года руководитель клиники Университета Барселоны (Испания) и Медицинской школы Ганновера (Германия) профессор Паоло Маккиарини (Paolo Macchiarini ; рис. 7) провел первую успешную операцию по трансплантации биоинженерного эквивалента трахеи пациентке со стенозом главного левого бронха на протяжении 3 см (рис. 8) .

В качестве матрикса будущего трансплантата был взят сегмент трупной трахеи длиной 7 см. Чтобы получить природную матрицу, по свойствам превосходящую все то, что можно сделать из полимерных трубок, трахею очистили от окружающей соединительной ткани, клеток донора и антигенов гистосовместимости. Очищение заключалось в 25 циклах девитализации с применением 4%-деоксихолата натрия и дезоксирибонуклеазы I (процесс занял 6 недель). После каждого цикла девитализации проводили гистологическое исследование ткани для выявления количества оставшихся ядросодержащих клеток, а также иммуногистохимическое исследование на наличие в ткани антигенов гистосовместимости HLA-ABC, HLA-DR, HLA-DP и HLA-DQ. Благодаря биореактору собственной разработки (рис. 9) ученые на поверхность медленно вращающегося отрезка трахеи равномерно нанесли шприцем суспензию клеток. Затем трансплантат, наполовину погруженный в среду для культивирования, вращался вокруг своей оси с целью попеременного контакта клеток со средой и воздухом.

Рисунок 9. Биореактор для создания тканеинженерного эквивалента трахеи. А - схема биореактора, вид с боку. Б - герметизация биореактора. В - биореактор с тканеинженерным эквивалентом трахеи in situ . Г - биореактор после удаления эквивалента трахеи. Д - вид эквивалента трахеи непосредственно перед операцией.

Эквивалент трахеи находился в биореакторе 96 часов; затем его трансплантировали пациентке. При операции был полностью удален главный левый бронх и участок трахеи, к которому он примыкал. В образовавшийся промежуток вшили трансплантат, а некоторое несоответствие диаметров просветов тканеинженерного эквивалента и бронха реципиента было преодолено благодаря эластичности донорской ткани.

По истечении десяти суток после операции пациентка была выписана из клиники без признаков дыхательной недостаточности и иммунной реакции отторжения трансплантата. По данным компьютерной томографии, с помощью которых была сделана виртуальная 3D реконструкция дыхательных путей, тканеинженерный эквивалент был практически неотличим от собственных бронхов пациентки (рис. 10).

;. DailyMail ;
  • «Первая успешная трансплантация тканеинженерной трахеи в клинике ». (2008). «Гены и клетки ».
  • Благодаря работам нобелевских лауреатов 2012 года в области медицины и физиологии уже в недалеком будущем можно будет выращивать ткани и органы для человеческого организма.

    Если говорить языком официального сообщения Шведской королевской академии наук, британский ученый Джон Гeрдон и японский ученый Синья Яманака получили Нобелевскую премию за «открытие возможности перепрограммирования зрелых клеток в плюрипотентные». По-простому - за доведение возможности искусственного получения стволовых клеток. Стволовые клетки теперь, как говорят, у многих людей на слуху. С ними связывают надежды на революционные изменения в медицине, когда можно будет выращивать вне организма «запчасти» для тела человека. Растолковать «на мужицкий ум», что такое стволовые клетки и в чем суть научного прорыва нобелевских лауреатов, согласился заведующий отделом Института биологии ткани НАН Украины, доктор биологических наук, профессор, член-корреспондент НАН Украины Ростислав Стойка.

    В нашем организме, - говорит Ростислав Степанович, - есть небольшое количество клеток, которые не имеют своего «лица», своей специализации, но имеют неограниченный потенциал развития и размножения. При определенных обстоятельствах они могут развиться в клетки любой ткани или органа. Если эти «неопределенные» клетки поместить, скажем, в сердечную мышцу, то они вступят признаков клеток сердечной мышцы, в головном мозге - клеток этого жизненно важного органа. Речь - о так называемые стволовые клетки.

    - Сколько вообще клеток в нашем организме?

    По очень сложный организм человека - не так уж и много, 85 триллионов. Но каждый отмирают более десяти миллиардов клеток. На место отмерших и поврежденных становятся потомки стволовых клеток.

    - Сколько раз может делиться клетка, возникающая из стволовой?

    Может быть 50-150 делений. Генетическая программа всех клеток, за исключением стволовых, многих раковых и незначительного количества других типов клеток функционирует так, что в хромосомах клетка укорачивается на своих концах (теломер) с каждым делением. Поскольку со старением клетки (а ее «возраст» определяется количеством делений клетки на ее жизненном пути) в ее генетическом материале (ДНК) накапливаются мутации с негативными последствиями. Такая «постарела» (а также повреждена внешними факторами инфицирован некоторыми опасными вирусами) клетка прибегает к апоптозу. Это - своеобразное «самоубийство» клетки с тем, чтобы не допустить превращения генетически поврежденных клеток в раковые. Итак, клетка микроскопических размеров (10-20 мкм) с помощью апоптоза заботится о здоровье всего организма.

    - Какой прорыв в биологической науке совершили нобелевские лауреаты 2012 года?

    Еще 1962 года Джон Гердон провел эксперимент, заменив ядро??(здесь содержится епентичний материал в виде ДНК) оплодотворенной яйцеклетки лягушки на ядро, взятое из специализированной клетки ее же кишечника. В результате из многократного деления такой измененной яйцеклетки впоследствии развивались нормальные головастики. Позже подобный эксперимент провели с использованием оплодотворенной яйцеклетки мыши, и также было получено полноценный организм этого вида животных. Этими опытами ученый доказал, что в геноме (сумма всех генов определенного вида организма) узкоспециализированных клеток хранится информация, которой вполне достаточно для обеспечения функционирования всех других клеток сложного организма. Второй лауреат Нобелевской премии Синья Яманака, значительно моложе по возрасту, в 2006 году опубликовал результаты исследований, которыми доказал, что активировав функционирование лишь четырех генов так называемых транскрипционных факторов (это - регуляторы интенсивности функционирования генов) клеток соединительной ткани, их можно превратить в стволовые клетки, из которых в дальнейшем могут развиваться любые клетки тканей и органов человека.

    - Речь идет о будущем альтернативу традиционной трансплантации органов?

    Именно так. Во-первых, не хватает донорских органов - почки, сердца, печени, суставов, глаз, и этот дефицит будет только расти. Во-вторых, операции по пересадке органов чрезвычайно дороги. Во время этих операций приходится использовать иммуносупрессанты, необходимые для подавления иммунной системы, чтобы не было отторжения чужеродного органа. Далее, современный человек настолько инфицирован, прежде вирусами, заменив какой-то орган, можно привнести в организм человека угрожающую инфекцию. Человек с угнетенным иммунитетом может банально подхватить воспаление легких или другую инфекцию. В то же время, трансформировав собственные клетки пациента в стволовые, мы избегаем необходимости применения иммуносупрессантов при трансплантации.

    - Есть уже примеры выращивания из стволовых клеток целых органов человека, скажем, сердца, печени, почек?

    Ближе всех к успеху - «выращивание» вне организма искусственной почки. Описанные примеры (пока экспериментальные) выращивания из стволовых клеток высокоспециализированных спермальних клеток, клеток иммунной системы, клеток тканей кожи. Последние незаменимы при устранении негативных последствий масштабных ожогов поверхности тела человека.

    - Говорят, наука должна просчитывать возможные отдаленные риски той или иной новации …

    Да, кроме уже упомянутых, одна из серьезных опасностей заключается в возможности преобразования трансплантированных стволовых клеток в злокачественные опухолевые клетки, которые, кстати, также имеют относительно неограниченный потенциал к размножению.

    И все же, можно надеяться, что лет через 50 замена больных человеческих органов на новые, выращенные из стволовых клеток, станет обычной практикой?

    Думаю, это произойдет значительно раньше, лет через 10.

    Из досье Ростислава Стойка

    Ростислав Стойка родился 23 мая 1950 года. Окончил с отличием биологический факультет Львовского государственного университета имени Ивана Франко, где является профессором кафедры биохимии. Специалист в области биохимии, клеточной и молекулярной биологии. Начал в Украину исследования механизмов программируемой клеточной смерти - апоптоза. Работал в научных центрах США, выполнял научные проекты Королевской академии наук Швеции. Соавтор шести монографий, в т.ч. «Апоптоз и рак: от теории к практике».

    Биологам впервые удалось вырастить в пробирке эмбрионы, достигшие стадии внедрения в стенку матки. До этого исследователи получали зародышевые тельца, которые не развивались дальше этого этапа. Теперь специалисты могут создавать удобные платформы для изучения развития животных и человека, а также решить проблемы разработки искусственной утробы. рассказывает о научной работе ученых из Кембриджского университета, опубликованной в журнале Science.

    Развитие позвоночных животных от одной клетки до многоклеточного организма - процесс очень сложный. В нем несколько стадий, в результате которых формируются различные группы влияющих друг на друга клеток. Хотя во всех одна и та же ДНК, от их местоположения в зародыше зависит то, какие гены будут активными. Это, в свою очередь, определяет функции клеток в тканях формирующегося организма.

    У млекопитающих развитие эмбриона может происходить как в теле матери, так и в яйце (у ехидны и утконоса). Зародыш возникает при оплодотворении ооцита (яйцеклетки). После этого происходит ее дробление - ряд делений с образованием все более мелких клеток (бластомеров). В результате формируется морула - шар, все внутреннее пространство которого заполнено 16-ю бластомерами.

    За стадией морулы следует стадия бластоцисты. Бластомеры продолжают делиться, все более уплотняясь и образуя полую сферу. В ней запускается процесс дифференцировки клеток, и образуются два типа клеток: трофобласт, формирующий внешний слой бластоцисты, и эмбриобласт (внутренняя клеточная масса), находящийся внутри нее. Эмбриобласт создает компактное образование у одного из полюсов бластоцисты.

    На стадии бластоцисты в клетках зародыша происходят процессы, которые устанавливают оси симметрии, а также регулируют экспрессию генов, что на следующих этапах приведет к формированию различных тканей. Эмбрион, который ранее напоминал сферу, становится асимметричным. Трофобласт дает начало экстраэмбриональным (внезародышевым) тканям, из которых затем образуются плацента, желточный мешок и амнион. Из эмбриобласта развиваются еще две группы клеток - эпибласт и гипобласт.

    Из эпибласта в итоге формируется тело будущего организма. Однако это происходит только при том условии, что клетки данной группы взаимодействуют с внезародышевыми тканями. Гипобласт способствует образованию некоторых внезародышевых структур, в том числе примитивной энтодермы, которая дает потом висцеральную энтодерму, окружающую эпибласт и выполняющую регуляторные функции.

    После того как бластоциста внедряется в слизистую матки в процессе беременности, структура зародыша меняется, постепенно усложняясь. Клетки эпибласта упорядочиваются, образуя форму розетки. Внутри возникает полость. Трофобласт в это время превращается во внезародышевую эктодерму (ExEc), в которой также есть полость. В конце концов обе полости соединяются. Кроме того, возникают мезодерма и первичные половые клетки, образуется зародышевый цилиндр.

    Эпибласт состоит из эмбриональных стволовых клеток (ЭСК), способных дифференцироваться в три зародышевых листка: эктодерму, мезодерму и энтодерму. Клетки этих трех слоев - плюрипотентные, то есть могут превратиться во все типы клеток взрослого организма. Именно поэтому ЭСК используются для создания зародышеподобных структур - эмбриоидов. Они помогают понять механизмы развития плода, однако проблема в том, что в них не воспроизводятся процессы, протекающие in vivo (в живом организме) после внедрения в стенку матки.

    Изображение: Magdalena Zernicka-Goetz, University of Cambridge

    Ученые решили убедиться в том, что внезародышевые ткани обеспечивают дальнейшее развитие эмбриона, проведя соответствующие эксперименты in vitro (в пробирке). Взяли эмбриональные стволовые клетки и небольшие группы стволовых клеток из трофобласта (ТСК) - предшественников клеток внезародышевых органов. Из них были получены клеточные культуры, имитирующие взаимодействие эпибласта с трофобластом. Связи между клетками осуществлялись через трехмерные внеклеточные структуры из коллагенового матрикса «Матригель».

    Матрикс заменял в культуре примитивную энтодерму, обеспечивая поляризацию клеток эпибласта и формирование полости. Оказалось, что в этих условиях ЭСК и ТСК образовывали форму, напоминающую зародышевый цилиндр и характерную для эмбрионов мышей после имплантации. Однако была не только внешняя схожесть. Тщательный анализ морфологии, размера, числа клеток и активности генов, характерных для определенных клеточных линий, показал, что в эмбрионах как in vivo, так и in vitro присутствовали отдельные структуры, полученные из стволовых клеток эпибласта и трофобласта.

    Исследователи выделили несколько этапов развития зародыша в пробирке. Сначала наблюдается спонтанная самоорганизация, которая приводит к поляризации клеток и образованию полостей внутри эмбриональной и экстраэмбриональной частей зародыша. Затем полости объединяются в один большой эквивалент проамниотической полости. Потом две группы стволовых клеток взаимодействуют через сигнальный путь Nodal. Сигналами служат белки, участвующие в эмбриональной индукции; они направляют развитие отдельных частей зародыша - например, способствуют формированию нервной системы. Все завершается выделением костного морфогенетического белка, который индуцирует образование клеток, напоминающих первичные половые клетки.

    Результаты исследования важны для решения проблемы создания искусственной утробы. В этом устройстве можно было бы вынашивать зародыши без участия живого существа. Однако до сих пор известны не все факторы, влияющие со стороны организма матери на дифференцировку клеток. Например, пока совершенно непонятна роль имплантации бластоцисты. Культивирование плодов in vitro в постимплантационный период невозможно без изучения того, что происходит с клетками зародышей в этот период. Новые эмбриоиды позволят проводить соответствующие исследования.

    21 октября 2016 в 19:21

    Японские ученые вырастили яйцеклетки из мышиных клеток кожи

    • Научно-популярное

    Японские ученые смогли превратить клетки кожи мыши в яйцеклетки, а затем вырастить из них здоровое потомство. Это первое создание половой клетки вне тела млекопитающего. Если этот процесс можно будет повторить для людей, возможно в будущем человечество сможет решить проблему бесплодия.

    Катсухико Хаяси, репродуктивному биологу из университета Кюсю в Фукуоке, совместно со специалистом в области стволовых клеток Митинори Сайто удалось сначала перепрограммировать стволовые клетки в эмбриональные , а их в примордиальные зародышевые клетки (ПЗК). Эти клетки появляются, когда эмбрион начинает развиваться, и позже они дают начало сперматозоидам и яйцеклеткам. Раньше исследователям нужно было переносить их в яичники живых мышей, чтобы они могли там окончательно развиться. Однако теперь необходимость в этом отпала. Метод Сайто и Хаяси позволяет ученым создавать неограниченное количество ПЗК, которые ранее было трудно получить. Это открытие стимулировало исследования в области воспроизводства млекопитающих.

    У мышей зародышевые клетки появляются на первой неделе эмбрионального развития, в количестве примерно 40. Эта небольшая группа продолжает формировать десятки тысяч яйцеклеток, которые самки мышей имеют при рождении, и миллионы клеток спермы у самцов.

    За 10 лет кропотливой работы Сайто и его команда выявили несколько генов – Stella, Blimp1 и Prdm14, которые в определенной комбинации играют решающую роль в развитии ПЗК. Используя эти гены в качестве маркеров, они могли выбрать ПЗК из числа других клеток и изучить, что с ними происходит. В 2009 году во время экспериментов в Центре биологии развития при Институте физико-технических исследований (RIKEN) в Кобе было установлено, что при соблюдении всех условий, необходимых для культивирования, добавление костного морфогенетического белка Bmp4 в строго определенное время приводит к преобразованию эмбриональных стволовых клеток в ПЗК. Чтобы проверить этот принцип, Сайто добавил высокую концентрацию Bmp4 в эмбриональные клетки, и почти все из них превратились в ПЗК. Он и другие ученые ожидали, что процесс будет более сложным.

    Позже к Сайто присоединился Хаяси, который попытался использовать клетки эпибласта - многоклеточного зародыша, имеющего однослойное строение – отправную точку Сайто. Но вместо того, чтобы использовать отдельные клетки, как это делал его коллега, он попытался взять устойчивую клеточную линию, которая может воспроизвести ПЗК. Это не сработало. После неудачи Хаяси продвинулся в другом исследовании, которое показало, что молекулы активина А и основной фактор роста фибропластов могут преобразовать выведенные ранее эмбриональные стволовые клетки в клетки, сродни эпибластам. Так появилась идея использовать два эти фактора, чтобы побудить эмбриональные клетки дифференцироваться в эпибласты, а затем применить предыдущую формулу Сайто, чтобы подтолкнуть получившиеся клетки превратиться в ПЗК. Такой подход оказался успешным. Чтобы проверить, смогут ли эти клетки развиться в жизнеспособные сперматозоиды и яйцеклетки, Сайто внедрил их в семенники мышей, которые не могли вырабатывать сперму естественным путем, и таким образом им восстановили фертильность. Затем команда осеменила искусственно созданными сперматозоидами обычные яйцеклетки. В результате получилось здоровое потомство.

    Следующий большой прорыв в исследованиях произошел в 2016 году, когда команда во главе с Яёй Обата из Токийского университета сельского хозяйства сообщила о трансформации ПЗК, выделенных из эмбрионов мышей, в ооциты (яйцеклетки) без участия млекопитающего. Работая с Обата, Хаяси и Сайто завершили цикл: от клеток кожи они пришли к функционирующим яйцеклеткам в пробирке. При использовании экстракорпорального оплодотворения на свет появились 26 здоровых мышат. Часть из них родилась из изначально имеющихся эмбриональных стволовых клеток, а другая от перепрограммированных клеток кожи. Хаяси говорит, что некоторые из них затем родили второе поколение мышей. «Части этой работы были сделаны ранее – здесь их собрали воедино. То, что они смогли получить здоровое потомство - впечатляет» - отмечает Дитер Эгли, биолог из института Нью-Йоркского фонда стволовых клеток.